Answer:
8
Step-by-step explanation:
0.3{10} + 10 / 2
3 + 10/2
3 + 5
8
Sum/difference:
Let

This means that

Now, assume that
is rational. The sum/difference of two rational numbers is still rational (so 5-x is rational), and the division by 3 doesn't change this. So, you have that the square root of 8 equals a rational number, which is false. The mistake must have been supposing that
was rational, which proves that the sum/difference of the two given terms was irrational
Multiplication/division:
The logic is actually the same: if we multiply the two terms we get

if again we assume x to be rational, we have

But if x is rational, so is -x/15, and again we come to a contradiction: we have the square root of 8 on one side, which is irrational, and -x/15 on the other, which is rational. So, again, x must have been irrational. You can prove the same claim for the division in a totally similar fashion.
Answer:
please attach the picture of figure
Step-by-step explanation:
Answer:
a_n = 2^(n - 1) 3^(3 - n)
Step-by-step explanation:
9,6,4,8/3,…
a1 = 3^2
a2 = 3 * 2
a3 = 2^2
As we can see, the 3 ^x is decreasing and the 2^ y is increasing
We need to play with the exponent in terms of n
Lets look at the exponent for the base of 2
a1 = 3^2 2^0
a2 = 3^1 2^1
a3 = 3^ 0 2^2
an = 3^ 2^(n-1)
I picked n-1 because that is where it starts 0
n = 1 (1-1) =0
n=2 (2-1) =1
n=3 (3-1) =2
Now we need to figure out the exponent for the 3 base
I will pick (3-n)
n =1 (3-1) =2
n =2 (3-2) =1
n=3 (3-3) =0
Answer:
1.) D
2.) B
3.)
a.) 7x-34
b.) x (division symbol) 45 + 6
4.)
a.) x decreased by 216
b.) the quotient of 15 and x