Jerome solves a problem using the law of conservation of momentum. What should Jerome always keep constant for each object after the objects collide and bounce apart?
a-velocity
b-mass
c-momentum
d-direction
Answer:
b. Mass
Explanation:
This question has to do with the principle of the law of conservation of momentum which states that the momentum of a system remains constant if no external force is acting on it.
As the question states, two objects collide with each other and eventually bounce apart, so their momentum may not be conserved but the mass of the objects is constant for each non-relativistic motion. Because of this, the mass of each object prior to the collision would be the same as the mass after the collision.
Therefore, the correct answer is B. Mass.
Answer:
20cm
Explanation:
Hello!
remember that the condition for a body to be at rest is that the sum of its moments and its forces be zero,
To solve this problem you must draw the free body diagram of the stick (attached image) and sum up moments at point 0 (where the sharp is located), which results in the following equation
(100g)(40cm)=x(200g)

The speed of the toy when it hits the ground is 2.97 m/s.
The given parameters;
- mass of the toy, m = 0.1 kg
- the maximum height reached by the, h = 0.45 m
The speed of the toy before it hits the ground will be maximum. Apply the principle of conservation of mechanical energy to determine the maximum speed of the toy.
P.E = K.E

Substitute the given values and solve the speed;

Thus, the speed of the toy when it hits the ground is 2.97 m/s.
Learn more here: brainly.com/question/7562874
Answer:
0.557 s
Explanation:
Given:
v₀ = 5.46 m/s
v = 0 m/s
a = -9.8 m/s²
Find: t
v = at + v₀
0 m/s = (-9.8 m/s²) t + 5.46 m/s
t = 0.557 s
Answer:
Velocity (magnitude) is 98.37 m/s
Explanation:
We use the vertical component of the initial velocity, which is:

Using kinematics expression of vertical velocity (in y direction) for an accelerated motion (constant acceleration, which is gravity):

Now we need to find
as a function of
. We use the horizontal velocity, which is always the same as follow:

We know the angle at 3 seconds:

Substitute
in
and then solve for 

With this expression we go back to the kinematic equation and solve it for initial speed
