1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
3 years ago
15

The people in a location in Florida mainly grow crops which need a lot of water. Which of these statements about the location be

st explains why the farmers grow crops which need a lot of water?
it is near the ocean
it has excess runoff
it receives heavy precipitation
it has a high rate of evaporation
Physics
2 answers:
muminat3 years ago
5 0

Answer: it has a high rate of evaporation

Soil water retention or holding capacity is dependent on the texture of the soil and the amount of organic matter present in the soil. Soil that holds more moisture can retain more amount of inorganic nutrients. The soil with low water holding capacity is likely to reach the saturation point than the soil with more water holding capacity. Also, the soil exhibiting the high concentration of the silt and clay is likely to have better water holding capacity. The soils with more water holding capacity is likely to have low rate of the evaporation when the soil is exposed to the heat.

According to the given situation, this can be concluded that the crops requires more water, because the soil may exhibit very low water holding capacity. It has a high rate of evaporation.

Arisa [49]3 years ago
4 0
The people of Florida are closest to the equator and also near 2 different bodies of water and have rivers running thru them as well salt water and fresh water. they need alot of freshwater due to monsoon seasons, hurricanes etc, its humid and hot there so naturally you need to water more often and frequently.
You might be interested in
Assume you need to design a hydronic system that can deliver 80,000 Btu/hr. What flow rate of water is required if the temperatu
PolarNik [594]

Answer:

At 10°F change in temperature

Mass flowrate = 1.01 kg/s = 2.227 lbm/s

Volumetric flowrate = 1010 m³/s = 35667.8 ft³/s

At 20°F change in temperature

Mass flowrate = 0.505 kg/s = 1.113 lbm/s

Volumetric flowrate = 505 m³/s = 17833.9 ft³/s

Explanation:

80000 btu/hr = 23445.7 W

P = ṁc(ΔT)

ṁ = MASS flowrate

c = specific heat capacity of water = 4182 J/kg.K,

ΔT = change in temperature = 10°F

To convert, a change of 18°F is equal to a change of 10°C

A change of 10°F = 10×10/18 = 5.556°C = 5.556K

P = ṁc(ΔT)

23445.7 = ṁ(4182 × 5.556)

ṁ = 23445.7/(4182 × 5.556)

ṁ = 1.01 kg/s = 2.227 lbm/s

In volumetric flow rate, Q = density × mass flowrate = 1000 × 1.01 = 1010 m³/s = 35667.8 ft³/s

For a change of 20°F,

ΔT = change in temperature = 20°F

To convert, a change of 18°F is equal to a change of 10°C

A change of 20°F = 20×10/18 = 11.1111°C = 11.111K

P = ṁc(ΔT)

23445.7 = ṁ(4182 × 11.111)

ṁ = 23445.7/(4182 × 11.111)

ṁ = 0.505 kg/s = 1.113 lbm/s

In volumetric flow rate, Q = density × mass flowrate = 1000 × 0.505 = 505 m³/s = 17833.9 ft³/s

Hope this Helps!!!

4 0
3 years ago
So this helicopter pilot dropped me in the middle of an absolutely smooth frictionless
Llana [10]
Dang dude you are a soldier! Good job
5 0
3 years ago
Read 2 more answers
The three factors that determine the amount of potential energy in an object are?
ozzi

Answer:

ggy h Jr scythe fund the CT h hytgy6fhhj

4 0
3 years ago
A load of 1 kW takes a current of 5 A from a 230 V supply. Calculate the power factor.
Pachacha [2.7K]

Answer:

Power factor = 0.87 (Approx)

Explanation:

Given:

Load = 1 Kw = 1000 watt

Current (I) = 5 A

Supply (V) = 230 V

Find:

Power factor.

Computation:

Power factor = watts / (V)(I)

Power factor = 1,000 / (230)(5)

Power factor = 1,000 / (1,150)

Power factor = 0.8695

Power factor = 0.87 (Approx)

6 0
4 years ago
Two charges are located in the x – y plane. If ????1=−4.10 nC and is located at (x=0.00 m,y=0.600 m) , and the second charge has
faust18 [17]

Answer:

The x-component of the electric field at the origin = -11.74 N/C.

The y-component of the electric field at the origin = 97.41 N/C.

Explanation:

<u>Given:</u>

  • Charge on first charged particle, q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.
  • Charge on the second charged particle, q_2=3.80\ nC=3.80\times 10^{-9}\ C.
  • Position of the first charge = (x_1=0.00\ m,\ y_1=0.600\ m).
  • Position of the second charge = (x_2=1.50\ m,\ y_2=0.650\ m).

The electric field at a point due to a charge q at a point r distance away is given by

\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.

where,

  • k = Coulomb's constant, having value \rm 8.99\times 10^9\ Nm^2/C^2.
  • \vec r = position vector of the point where the electric field is to be found with respect to the position of the charge q.
  • \hat r = unit vector along \vec r.

The electric field at the origin due to first charge is given by

\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.

\vec r_1 is the position vector of the origin with respect to the position of the first charge.

Assuming, \hat i,\ \hat j are the units vectors along x and y axes respectively.

\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.

Using these values,

\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.

The electric field at the origin due to the second charge is given by

\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.

\vec r_2 is the position vector of the origin with respect to the position of the second charge.

\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.

Using these values,

\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\  N/C.

The net electric field at the origin due to both the charges is given by

\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.

Thus,

x-component of the electric field at the origin = -11.74 N/C.

y-component of the electric field at the origin = 97.41 N/C.

4 0
3 years ago
Other questions:
  • 100 POINTS PLEASE HELP ASAP!!!!
    8·2 answers
  • Which of the following is not true of color blindness?
    10·2 answers
  • In being served, a tennis ball is accelerated from rest to a speed of 42.1 m/s. The average power generated during the serve is
    6·1 answer
  • Which of the following values represents an index of refraction of an actual material?
    10·1 answer
  • A cannon of mass 5.71 x 103 kg is rigidly bolted to the earth so it can recoil only by a negligible amount. The cannon fires a 7
    15·1 answer
  • How do you think overpumping groudwater is related to the formation of sinkholes?
    15·1 answer
  • Each of two identical objects carries a net charge. The objects are made from conducting material. One object is attracted to a
    14·1 answer
  • What is measurement​
    5·2 answers
  • &lt;
    14·1 answer
  • Starting over, so here's some points! Take em<br> ~Jayden
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!