Answer:
Explanation:
Mass =11.2kg
Constant velocity =3.3m/s
μk=0.25
Since the body is moving in constant velocity, then the acceleration is zero(0).
ΣF = Σ(ma)
The normal force acting on the body is upward and the weight is acting downward
Then ΣFy=0
Therefore, N=W
W=mg=11.2×9.8=109.76N
So, N=W=109.76N
Frictional force is given as
Fr=μkN
Fr=0.25×109.76
Fr=27.44N
Frictional force acting against the motion is 27.44N
Then the forward force moving the body forward
ΣF = Σ(ma)
Since a = 0
Then,
ΣF = 0
F-Fr=0
Then F=Fr
So the force moving the body forward is 27.44N
Answer:
529.15 m/s
Explanation:
h = Maximum height = 70000 m
g = Acceleration due to gravity = 2 m/s²
m = Mass of sulfur
As the potential and kinetic energies are conserved

The speed with which the liquid sulfur left the volcano is 529.15 m/s
The number of lines per mm in the diffraction grating is 326.
<h3>What is diffraction grating?</h3>
A diffraction grating is a type of optical instrument obtained with a continuous pattern. The pattern of the diffracted light by a grating depends on the structure and number of elements present.
The given data in the problem is
is the angle formed between the path of the incident light and the diffracted light = 9. 2°
λ is the wavelength of the light=490nm=4.9
N is the number of lines per mm in the diffraction grating=?
n is ordered = 1
The formula for the diffraction grating is;

The number of lines per mm is found as;

Hence the number of lines per mm in the diffraction grating is 326.
To learn more about diffraction grating refer to the link;
brainly.com/question/1812927
Answer:
The answer is "c,d,e, and g".
Explanation:
The correct choices can be defined as follows:
- Higher-frequency microwaves aren't used in any of these systems.
- Infrared waves aren't seen in each of these technologies.
- Its shortest wavelength of all of the technologies listed is the above radiation generated by certain wireless networks.
- These devices all produce waves of wavelengths ranging from 0.10 to 10.0 cm.
Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.