1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
3 years ago
11

Ebony walked at a rate of 3 1/2 miles per hour for 1 1/3 hours. how far did she walk.

Mathematics
1 answer:
Pachacha [2.7K]3 years ago
7 0
About 4.65 miles. Multiply 3 1/2 (3.5) by 1 1/3 (1.33) and thats how you get the answer
You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
-1/3x+2x=3 3/4 what does the variable represent?
svet-max [94.6K]
Start off by combining like terms on the LHS (the terms with x in them).

So we get \frac{-1}{3}x+2x= \frac{-1}{3}x+ \frac{6}{3}x= \frac{-5}{3}x

Replacing this result with what we had before on the LHS, we get \frac{-5}{3}x=3 \frac{3}{4}= \frac{9}{4}

⇒Solve for x (divide both sides \frac{-5}{3})
⇒Don't forget about reciprocity rules when dividing.  This is the same as multiplying both sides by \frac{3}{-5}

⇒x= \frac{9}{4}( \frac{3}{-5})

⇒x= -\frac{27}{20}=-1\frac{7}{20} ***This is a proper fraction
4 0
3 years ago
Read 2 more answers
Can y’all help me a question 25?!
Elenna [48]

Answer:

19.8839 miles away

Step-by-step explanation:

:)

3 0
3 years ago
Sorry I have trouble with math
Pavlova-9 [17]

Answer:

okkk budyyyyyyyysjsj

6 0
3 years ago
Each block in Ton's neighborhood is 3/8 mile long.If he walks four and 1/2 how far dose he walk
hram777 [196]

since each block is 3/8 of a mile, then how many miles in 4½?  well, it'd just be their product, but let's firstly convert the mixed fraction to improper.


\bf \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}}
\\\\\\
\cfrac{9}{2}\cdot \cfrac{3}{8}\implies \cfrac{27}{16}\implies 1\frac{11}{16}

3 0
3 years ago
Other questions:
  • F(x)=5^x if F(-2) what does this equal
    14·1 answer
  • Write the number as a product of prime factors 126
    11·1 answer
  • How do i write (n+5)(2n-3) in general form?
    12·2 answers
  • What is 240 times 365?
    11·2 answers
  • Is 5x and x like terms
    13·1 answer
  • Factor the expression p2-16
    10·1 answer
  • 11. The student council is comparing prices for their semi-formal dance. They compare banquet. Hall A charges $40 per person. Ha
    15·1 answer
  • On Friday, Carlotta had 6/8 of her paper left to write. She wrote 2/6 of the paper on Saturday and ¼ of the paper on Sunday. At
    13·1 answer
  • Order the numbers from least to greatest. 35.0 135.9 35.0 35.061
    13·2 answers
  • Is this a function yes or no? right answers only please!
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!