Answer:
Yes of course! Now hurry and copy this link cause they will probably take this question down for putting it in. I hope that this helps!
Step-by-step explanation:
https://fliphtml5.com/itej/wqzy/basic/51-100
Volume of cylinder is 402.1238....=402.12ft
Volume of rectangle is 1344ft
Add both together= 1746.12ft
Surface area of rectangle:
Length=14ft
width= 8ft
height =12ft
14x12=168x2=336
8x12=96x2=192
14x8=112x2=224
336+192+224=752
Surface Area of cylinder:
Radius= 4ft
height=8ft
2π r h+2π r^2
2π4(12)+2<span>π4^2
2</span>π48+2<span>π16
301.59+100.53=402.42ft
Add both surface area together=1154.12ft</span>
I think it’s either D or A,
So sorry if I’m wrong
Answer:
If n = 1000000, then
![P(h E [495000, 505000]) = \int\limits^{50500}_{495000} {\frac{2}{\sqrt{2000000\pi}} e^{\frac{-(k-500000)^2}{500000} }} \, dk](https://tex.z-dn.net/?f=P%28h%20E%20%5B495000%2C%20505000%5D%29%20%3D%20%5Cint%5Climits%5E%7B50500%7D_%7B495000%7D%20%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B2000000%5Cpi%7D%7D%20e%5E%7B%5Cfrac%7B-%28k-500000%29%5E2%7D%7B500000%7D%20%7D%7D%20%5C%2C%20dk)
If n = 10400, then
![P(h E [495000, 505000]) = \int\limits^{50500}_{495000} {\frac{2}{\sqrt{2000000\pi}} e^{\frac{-(k-500000)^2}{500000} }} \, dk](https://tex.z-dn.net/?f=P%28h%20E%20%5B495000%2C%20505000%5D%29%20%3D%20%5Cint%5Climits%5E%7B50500%7D_%7B495000%7D%20%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B2000000%5Cpi%7D%7D%20e%5E%7B%5Cfrac%7B-%28k-500000%29%5E2%7D%7B500000%7D%20%7D%7D%20%5C%2C%20dk)
If N = 102, then

Step-by-step explanation:
Since the coin is fair, then the probability that a filp is heads is 1/2. Given N tries, the amount of heads can be approximated with a Normal distribution with mean μ = N *1/2 = N/2 and standard deviation σ = √(N*1/2 * 1/2) = √N/ 2
The density function of that random variable is given by de following formula

If n = 1000000, then
![P(h E [495000, 505000]) = \int\limits^{50500}_{495000} {\frac{2}{\sqrt{2000000\pi}} e^{\frac{-(k-500000)^2}{500000} }} \, dk](https://tex.z-dn.net/?f=P%28h%20E%20%5B495000%2C%20505000%5D%29%20%3D%20%5Cint%5Climits%5E%7B50500%7D_%7B495000%7D%20%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B2000000%5Cpi%7D%7D%20e%5E%7B%5Cfrac%7B-%28k-500000%29%5E2%7D%7B500000%7D%20%7D%7D%20%5C%2C%20dk)
If n = 10400, then
![P(h E [495000, 505000]) = \int\limits^{50500}_{495000} {\frac{2}{\sqrt{2000000\pi}} e^{\frac{-(k-500000)^2}{500000} }} \, dk](https://tex.z-dn.net/?f=P%28h%20E%20%5B495000%2C%20505000%5D%29%20%3D%20%5Cint%5Climits%5E%7B50500%7D_%7B495000%7D%20%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B2000000%5Cpi%7D%7D%20e%5E%7B%5Cfrac%7B-%28k-500000%29%5E2%7D%7B500000%7D%20%7D%7D%20%5C%2C%20dk)
If N = 102, then
