Answer:
Solution given:
A triangle PQR is right angled at R, with hypotenuse{h}PQ=80cm
and
base[b]PR=60cm.
perpendicular [P]= QR
<u>by</u><u> </u><u>using</u><u> </u><u>Pythagoras</u><u> </u><u>law</u>
<u>h²</u><u>=</u><u>p²</u><u>+</u><u>b²</u>
80²=QR²+60²
QR²=80²-60²
QR=
QR=20
=52.9=53cm
<u>QR</u><u>=</u><u>5</u><u>3</u><u>c</u><u>m</u><u>.</u>
Answer:
x = 2.81 and 2.096
Step-by-step explanation:
Given the expression
10(2^x) + 7(3^x) = 6^x + 70
This can also be expressed as;
10(2^x) + 7(3^x) = (2*3)^x + 70
10(2^x) + 7(3^x) = 2^x*3^x + 70
Let a = 2^x and b = 3^x
10a + 7b = ab + 70
10a + 7b - ab = 70
10a-ab + 7b - 70 = 0
a(10-b)+7(b-10) = 0
a(10-b)-7(10-b) = 0
a-7 = 0 and 10-b = 0
a = 7 and b = 10
Since a = 2^x
7 = 2^x
log 7 = log2^x
log7 = xlog2
x = log7/log2
x = 2.81
Similarly
10 = 3^x
log 10 = log 3^x
log 10 = xlog3
x = log 10/log 3
x = 1/0.4771
x = 2.096
Hence the values of x that satisfies the equation are 2.81 and 2.096
Answer:
25 times .10 = 2.5 (22.5) 22.5-1.00= 21.5
Step-by-step explanation:
Answer:
+or- 8
Step-by-step explanation:
take the square root of 64
Answer:
m∠SRT = 33° ∵ m∠QRT = m∠SRT
Step-by-step explanation:
Given the diagram,
RT bisects ∠SRQ, and m∠QRT = 33°
RT bisecting ∠SRQ means RT will bisect ∠SRQ into two equal angles, which are:
m∠QRT = m∠SRT
as
m∠QRT = 33°
so
m∠SRT = 33° ∵ m∠QRT = m∠SRT