1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
2 years ago
12

Consider the quadratic equation x2 − 6x = 16.

Mathematics
1 answer:
e-lub [12.9K]2 years ago
8 0

Answer:

  1. C) (x − 3)2 = 25
  2. C) Factor out 4 from 4x2 + 40x.

Step-by-step explanation:

1. Adding the square of half the x-coefficient to both sides of the equation will "complete the square." That square is 9, so the result on the right is 16+9 = 25. Only selection C matches.

___

2. To complete the square, you want to be able to put the quadratic into the form a(x -h)^2 = -k. For the purpose, it is most convenient to first factor "a" from the given quadratic. Then you can determine "-h" to be half the x-coefficient inside the parentheses.

Here, that looks like ...

  4(x² +10x) = 80 . . . . . . . . . . step 1: factor out 4

  4(x² +10x +25) = 180 . . . . . add 25 inside parentheses and the same number (4·25) on the right side of the equation

  4(x +5)² = 180 . . . . . . . . . . . written as a square

You might be interested in
You have an ant farm with 31 ants. The population of ants in your farm will double every 3 months. The table shows the populatio
Evgesh-ka [11]

Answer:

I think the table is linear. The total amount after one year is 248 ants.

Step-by-step explanation:

8 0
2 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Two collinear points on a line are given in the table below:
katrin [286]

Answer:

(4,3) and (7,2) do not lie on the line

Step-by-step explanation:

Given

(0,0)\ and\ (2,1)

Required

Determine which points that are not on the line

First, we need to determine the slope (m) of the line:

m = \frac{y_2 - y_1}{x_2- x_1}

Where

(x_1,y_1) = (0,0)

(x_2,y_2) = (2,1)

So;

m = \frac{y_2 - y_1}{x_2- x_1}

m = \frac{1 - 0}{2-0}

m = \frac{1}{2}

Next, we determine the line equation using:

y - y_1 = m(x -x_1)

Where

m = \frac{1}{2}

(x_1,y_1) = (0,0)

y - y_1 = m(x -x_1) becomes

y - 0 = \frac{1}{2}(x - 0)

y = \frac{1}{2}x

To determine which point is on the line, we simply plug in the  values of x to in the equation check.

For (4,2)

x = 4 and y =2

Substitute 4 for x and 2 for y in y = \frac{1}{2}x

2 = \frac{1}{2} * 4

2 = \frac{4}{2}

2=2

<em>This point is on the graph</em>

<em></em>

For (4,3)

x = 4 and y = 3

Substitute 4 for x and 3 for y in y = \frac{1}{2}x

3 = \frac{1}{2} * 4

3 = \frac{4}{2}

3 \neq 2

<em>This point is not on the graph</em>

<em></em>

For (7,2)

x = 7 and y = 2

Substitute 7 for x and 2 for y in y = \frac{1}{2}x

2 = \frac{1}{2} * 7

2 = \frac{7}{2}

2 \neq 3.5

<em></em>

<em>This point is not on the graph</em>

<em></em>

<em></em>(\frac{4}{8},\frac{2}{8})<em></em>

<em></em>x = \frac{4}{8} and<em> </em>y = \frac{2}{8}<em></em>

<em>Substitute </em>\frac{4}{8}<em> for x and </em>\frac{2}{8}<em> for y in </em>y = \frac{1}{2}x<em></em>

<em></em>\frac{2}{8} = \frac{1}{2} * \frac{4}{8}<em></em>

<em></em>\frac{2}{8} = \frac{1 * 4}{8 * 2}<em></em>

<em></em>\frac{2}{8} = \frac{4}{16}<em></em>

<em></em>\frac{1}{4} = \frac{1}{4}<em></em>

<em></em>

<em>This point is on the graph</em>

3 0
3 years ago
I need help asap please!!!
Mashcka [7]
1. x = 118      2. x = -54      3. x = -54      4. x = -54

5 0
3 years ago
What is the number that have 6 odd factors?
Snezhnost [94]

Answer:

840 has 6 odd factors

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Misty Duncan had $73.90 in cash receipt last month. Her cash receipt
    10·1 answer
  • What are 2 numbers that round to 264.5 when rounded to the nearest tenth
    14·2 answers
  • Use common factors to write two fractions equivalent to 6/24
    13·2 answers
  • Is pie over 2 rational
    8·1 answer
  • Which algebraic expression represents the phrase “six less than a number
    14·2 answers
  • 15. Mr. Taylor rides his moped down the country road in front of his house. His wife and their two sons ride bicycles in the opp
    10·1 answer
  • What is the difference between 15.0 and 20.0​
    9·1 answer
  • Spencer shot 24 basketball shots and made 16 shots. What percent of the shots did Spencer miss?
    15·2 answers
  • Lighthouse height 8 cm scale 1 cm=4m
    14·1 answer
  • What is 11% of R250?<br><br>​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!