<u>Answer:</u> The volume of acid should be less than 100 mL for a solution to have acidic pH
<u>Explanation:</u>
To calculate the volume of acid needed to neutralize, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is HCl
are the n-factor, molarity and volume of base which is NaOH
We are given:

Putting values in above equation, we get:

For a solution to be acidic in nature, the pH should be less than the volume of acid needed to neutralize.
Hence, the volume of acid should be less than 100 mL for a solution to have acidic pH
Note: We must keep the units we use consistent. The Cp is given in cal/gC so we will use cal for energy, grams for mass and C for temperature.
1)
Heat supplied can be calculated using:
Q = mCpΔT; where m is the mass, Cp is the specific heat capacity and ΔT is the temperature change.
Q = 367 x 0.092 x (60 - 23)
Q = 125 Cal
2)
Using the same equation:
125 = 60 x 0.092 x (T - 23)
T = 45.6 C
In group theory, a branch of mathematics, the term order is used in two unrelated senses:
<span><span>The order of a group is its cardinality, i.e., the number of elements in its set. Also, the order, sometimes period, of an element a of a group is the smallest positive integer m such that <span>am = e</span> (where e denotes the identity element of the group, and am denotes the product of m copies of a). If no such m exists, a is said to have infinite order.</span><span>The ordering relation of a partially or totally ordered group.</span></span>
This article is about the first sense of order.
The order of a group G is denoted by ord(G) or | G | and the order of an element a is denoted by ord(a) or | a |.