For the titration we use the equation,
M₁V₁ = M₂V₂
where M is molarity and V is volume. Substituting the known values,
(0.15 M)(43.2 mL) = (2)(M₂)(20.5 mL)
We multiply the right term by 2 because of the number of H+ in H2SO4. Calculating for M₂ will give us 0.158 M. Thus, the answer is approximately 0.16M.
At an optimum pH of 7.0, there are more molecules per minute in all amounts of substrate thus this pH is ideal for maximum growth. 5. Enzymes function most efficiently at the temperature of a typical cell, which is 37 degrees Celsius. Increases or decreases in temperature can significantly lower the reaction rate.
Answer:
Proteins and nucleic acids
Explanation:
Nitrogen compounds in animals that are no longer of use, or are in access are excreted from the animals body, and are thus called nitrogenous waste. These nitrogenous waste can be excreted in three different ways.
1. Ammonia
2. Urea
3. Uric acid
Answer:
(a) the mass of the water is 3704 g
(b) the mass of the water is 199, 285.7 g
Explanation:
Given;
Quantity of heat, H= 8.37 x 10⁶ J
Part (a) mass of water (as sweat) need to evaporate to cool that person off
Latent heat of vaporization of water, Lvap. = 2.26 x 10⁶ J/kg
H = m x Lvap.

mass in gram ⇒ 3.704 kg x 1000g = 3704 g
Part (b) quantity of water raised from 25.0 °C to 35.0 °C by 8.37 x 10⁶ J
specific heat capacity of water, C, 4200 J/kg.°C
H = mcΔθ
where;
Δθ is the change in temperature = 35 - 25 = 10°C

mass in gram ⇒ 199.2857 kg x 1000 g = 199285.7 g
Answer:
A. 6N
B. 4H, 2O
C. 4H, 4N, 12O
D. 2Ca, 4O, 4H
E. 3Ba, 6Cl, 18O
F. 5Fe, 10N, 30O
G. 12Mg, 8P, 32O
H. 4N, 16H, 2S, 8O
I. 12Al, 18Se, 72O
J. 12C, 32H
I am 90% sure this is correct