<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>:</em><em>)</em>
I don't really understand what it's asking
,but I think it wants me to see if it's correct or not
I think this is fully incorrect because there has to be one girl out of those 50 people and I also think that there are gonna be 5th and 6th graders in those 50 people too!
Answer:
If x is the distance from centre fo the circle, with radius 25cm, to its intersection point with the common chord, x²+24²=25² =>x=7cm.
Distance from this intersecting point to the centre of the other circle=39–7=32cm
Ratio of the sides of the right triangle thus formed is 24:32=3:4. Since 3:4:5 is the basic pythagorean triplet, the radius of the other circle=5*24/3=40cm.
Aliter: radius of the other circle=√32²+24²= 40cm.
<h2><em>please</em><em> </em><em>mark</em><em> me</em><em> as</em><em> brainalist</em></h2>
Note that f(x) as given is <em>not</em> invertible. By definition of inverse function,


which is a cubic polynomial in
with three distinct roots, so we could have three possible inverses, each valid over a subset of the domain of f(x).
Choose one of these inverses by restricting the domain of f(x) accordingly. Since a polynomial is monotonic between its extrema, we can determine where f(x) has its critical/turning points, then split the real line at these points.
f'(x) = 3x² - 1 = 0 ⇒ x = ±1/√3
So, we have three subsets over which f(x) can be considered invertible.
• (-∞, -1/√3)
• (-1/√3, 1/√3)
• (1/√3, ∞)
By the inverse function theorem,

where f(a) = b.
Solve f(x) = 2 for x :
x³ - x + 2 = 2
x³ - x = 0
x (x² - 1) = 0
x (x - 1) (x + 1) = 0
x = 0 or x = 1 or x = -1
Then
can be one of
• 1/f'(-1) = 1/2, if we restrict to (-∞, -1/√3);
• 1/f'(0) = -1, if we restrict to (-1/√3, 1/√3); or
• 1/f'(1) = 1/2, if we restrict to (1/√3, ∞)