36 inches is equal to 3 feet ;)
1. Using the exponent rule (a^b)·(a^c) = a^(b+c) ...

Simplify. Write in Scientific Notation
2. You know that 256 = 2.56·100 = 2.56·10². After that, we use the same rule for exponents as above.

3. The distributive property is useful for this.
(3x – 1)(5x + 4) = (3x)(5x + 4) – 1(5x + 4)
... = 15x² +12x – 5x –4
... = 15x² +7x -4
4. Look for factors of 8·(-3) = -24 that add to give 2, the x-coefficient.
-24 = -1×24 = -2×12 = -3×8 = -4×6
The last pair of factors adds to give 2. Now we can write
... (8x -4)(8x +6)/8 . . . . . where each of the instances of 8 is an instance of the coefficient of x² in the original expression. Factoring 4 from the first factor and 2 from the second factor gives
... (2x -1)(4x +3) . . . . . the factorization you require
Answer:
3.4
Step-by-step explanation:
Standard deviation of a population is defined as:
σ² = ∑(xᵢ − μ)² / n
The standard deviation of a sample is defined as:
s² = ∑(xᵢ − x)² / (n - 1)
It's not clear which one we have, so let's calculate both.
First, we must find the mean.
μ = (5+12+15+10+12+6+8+8) / 8
μ = 9.5
Now we find the squares of the differences:
(5-9.5)² + (12-9.5)² + (15-9.5)² + (10-9.5)² + (12-9.5)² + (6-9.5)² + (8-9.5)² + (8-9.5)²
= 80
Divide by n:
σ² = 80 / 8
σ² = 10
And take the square root:
σ = √10
σ ≈ 3.2
That's not one of the answers, so let's try the standard deviation of a sample instead of a population.
Instead of dividing by n, we'll divide by n-1:
s² = 80 / 7
And take the square root:
s = √(80/7)
s ≈ 3.4
So that must be it.
To represent the number of cans in each shelf you will divide the total number of cans by the number of shelves.
This is represented as
t/4 = n.
17,16. That what comes next I think