Taking into account the reaction stoichiometry, 340.0 moles of methane are produced when 85.1 moles of carbon dioxide gas react with excess hydrogen gas
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
CO₂ + 4 H₄ → CH₄ + 2 H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- CO₂: 1 mole
- H₄: 4 moles
- CH₄: 1 mole
- H₂O: 2 moles
<h3>Moles of CH₄ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 1 mole of CO₂ form 4 moles of CH₄, 85.1 moles of CO₂ form how many moles of CH₄?

<u><em>moles of CH₄= 340.4 moles</em></u>
Then, 340.0 moles of methane are produced when 85.1 moles of carbon dioxide gas react with excess hydrogen gas
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1
Answer:
the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene
Explanation:
The λmax is the wavelength of maximum absorption. We could use it to calculate the HOMO-LUMO energy difference as follows:
For ethylene
E= hc/λ= 6.63×10^-34×3×10^8/170×10^-9= 1.17×10^-18J
For cis,trans−1,3−cyclooctadiene
E= hc/λ=6.63×10^-34×3×10^8/230×10^-9=8.6×10^-19J
Therefore, the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene
Answer:
SO < CO2 < C3H8
Explanation:
Entropy refers to the degree of disorderliness of a system. The standard molar entropy of a substance refers to the entropy of 1 mole of the substance vunder standard conditions.
The molar entropy depends on the number of microstates in the system which in turn depends on the number of atoms in the molecule.
C3H8 has 11 atoms and hence the highest number of microstates followed by CO2 having three atoms and least of all SO having only two atoms.
Answer:
M = 0.138 M
Explanation:
Given data:
Mass of glucose = 12.55 g
Volume of solution = 500 mL
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 12.55 g/ 180.156 g/mol
Number of moles = 0.069 mol
Volume in L:
500 mL × 1 L /1000 mL
0.5 L
Molarity:
M = 0.069 mol / 0.5 L
M = 0.138 M