Answer:
90g of H2O
Explanation:
2H2 + O2 —> 2H2O
First, we calculate the molar masses of H2 And H20.
Molar Mass of H2 = 2g/mol
Mass conc of H2 from the balanced equation = 2 x 2 = 4g
Molar Mass of H2O = 2 + 16 = 18g/mol
Mass conc of H2O from the balanced equation = 2x18 = 36g
From the equation,
4g of H2 produced 36g of H2O
Therefore, 10g of H2 will be produce = (10x36)/4 = 90g of H2O
Characteristic properties can be used to describe and identify the substances, while non-characteristic properties, although can be used to describe the substances, cannot be used to identify them.
Temperature, mass, color, shape and volume are examples of non-characteristic properties.
Density, boiling point, melting point, chemical reactivity are examples of characteristic properties.
List of the properties observed by the scientist:
-----------------------------------------------------------------
Property Type of property
----------------------------------------------------------------
Volume: 5 ml non-characteristic
----------------------------------------------------------------
Color: blue non-characteristic
----------------------------------------------------------------
State: liquid characteristic
------------------------------------------------------------
density: 1.2 g/cm characteristic
------------------------------------------------------------
Reaction: reacts with CO2 characteristic
----------------------------------------------------------
<span>Okay then I would go with choice B since fusion takes place in the sun which is a giant star.</span>
The major visible difference between<span> the two are crystal size, </span>intrusive rocks<span> have a larger crystal/grain texture due to the slow cooling of magma below the earth surface which encourages the growth of larger crystals, while </span>extrusive rocks<span>, because of the rapid cooling at/above the earth's surface does the opposite. Hope I helped</span>
Answer:
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Explanation:
Hello!
In this case, since the molarity of a solution is defined in terms of the moles of the solute and the volume of solution, given that the concentration of Cu(NH₃)₄²⁺ is 0.041 M, and there is only one copper atom per Cu(NH₃)₄²⁺ ion, we can compute the concentration of Cu²⁺ as shown below:
![[Cu^{2+}]=0.041\frac{molCu(NH_3)_4^{2+}}{L}*\frac{1molCu^{2+}}{1molCu(NH_3)_4^{2+}} =0.041 \frac{molCu(NH_3)_4^{2+}}{L}](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B1molCu%5E%7B2%2B%7D%7D%7B1molCu%28NH_3%29_4%5E%7B2%2B%7D%7D%20%3D0.041%20%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D)
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Best regards!