Answer:
Step-by-step explanation: Let P( E and C and L)' = 0.50 and P(Ec and Cc and Lc) = x
P(E) = 0.41 - {( 0.89 - x) + (0.22 - x) + x} = 0.41 - 1.11 - x = - 0.70 - x
P(C) = 0.31 - {(0.71 - x) + (0.22 - x) + x} = 0.31 - 0.92 - x = - 0.61 - x
P(L) = 0.25 - {(0.71 - x) + (0.89 - x) + x} = 0.25 - 1.60 - x = - 1.35 - x
1 = (-0.70 - x) + (-0.61 - x) + (-1.35 - x) + (0.71 - x) + (0.22 - x) + (0.89 - x) + x + 0.50
1 = -0.24 - 5x
5x = -1 - 0.24 = -1.24
x = -1.24/5 = -0.248
a) P(E) = -0.70 - (-0.248) = -0.70 + 0.248 = -0.452
b) P(C) = -0.61 - (-0.248) = -0.61 + 0.248 = -0.362
c) P(L) = -1.35 - (-0.248) = -1.35 + 0.248 = -1.102
d) P(E and C) = 0.22 - (-0.248) = 0.22 + 0.248 = 0.468
e) P(Ec and Cc and Lc) = -0.248
f) P(E or C or L) = P(E and C and L)'= 0.50
g)
i) P(E and C and L) = -0.452 - 0.362 - 1.102 = -1.916
j) P(E and L) = 0.89 - (-0.248) = 0.89 + 0.248 = 1.138
k) P(C and L) = 0.71 - (-0.248) = 0.71 + 0.248 = 0.958
l) P(C\(E and L) = 0.468 + 0.958 - 1.1386 - 0.248 = 1.427 - 1.386 = 0.041