1 US = 1.09 Australian
divide by 1.09 on both sides to find how much a 1 Australian dollar is worth.
1/1.09 = 1 Australian dollar
1 Australian dollar = 0.92 US dollar
mulitply 35 on both sides of the equation
35 Australian = 35 (0.92) = 32.2 US dollars
Between 8 and 9
is the correct answer (8.06)
Answer:The correct option is a)
The upper limit of successes that would be deemed to be usual is 5, so more than 5 successes would be unusual.
Step-by-step explanation:
The mean of a binomial distribution
μ= np where n=10 and p= 0.2 q= 1-p, q= 1-0.2=0.8
μ= 10×0.2=2
σ=√npq
σ=√10×0.2×0.8=1.26
Is unusual for the number of success to be greater than μ + 2.5σ.
= 2+2.5(1.26)
=5 approximately.
So it is unusual for it to be greater than 0.5. The right option Is a)
Answer:
6x +47
Step-by-step explanation:
f(x) = 6x + 11
g(x) = x + 6
now f[g(x)]=<em>by</em><em> </em><em>substituting</em><em> </em><em>values</em><em> </em><em>of</em><em> </em><em>g</em><em> </em><em>(</em><em>x</em><em>)</em>
<em>to</em><em> </em><em>f</em><em> </em><em>(</em><em>x</em><em>)</em>
<em>f[g(x)]</em><em>=</em><em>6</em><em> </em><em>(</em><em>x</em><em>+</em><em>6</em><em>)</em><em>+</em><em>11</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>6x</em><em>+</em><em>36</em><em>+</em><em>11</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>6x</em><em> </em><em>+</em><em>47</em>
To determine price per lb, divide dollar amount by lbs.
- Company A sells 2 1/2lbs (2.5lbs) for $32.50
So, Company A's price / lb = ($32.50/2.5lbs) = $13.00/lb
- Company B sells 2 3/4lbs (2.75lbs) for $35.00
And, Company B's price / lb = ($35.00/2.75lbs) = $12.73/lb
Therefore, Company B is offering the lowest price/lb at $12.73/lb.