He saves $200 (the amount of change over the original amount $500
200/500 = 2/5 and 2/5 = 40% (divide 2 by 5 and get .4 which = 40%)
40% discount is the answer to your question
It is 1/4 of the area of the larger triangle...basically if you connect the three midpoints of the triangle's sides it creates four identical smaller triangles...
The perimeter is one half of the larger triangle...
Answer:
11.5 sec
Step-by-step explanation:5.5+6=11.5
The answer to 84 divided by 4=21.
Note that
Answer:
Mary's risk premium is $0.9375
Step-by-step explanation:
Mary's utility function,
Mary's initial wealth = $100
The gamble has a 50% probability of raising her wealth to $115 and a 50% probability of lowering it to $77
Expected wealth of Mary, 
= (0.5 * $115) + (0.5 * $77)
= 57.5 + 38.5
= $96
The expected value of Mary's wealth is $96
Calculate the expected utility (EU) of Mary:-
![E_u = [0.5 * U(115)] + [0.5 * U(77)]\\E_u = [0.5 * 115^{0.5}] + [0.5 * 77^{0.5}]\\E_u = 5.36 + 4.39\\E_u = \$ 9.75](https://tex.z-dn.net/?f=E_u%20%3D%20%5B0.5%20%2A%20U%28115%29%5D%20%2B%20%5B0.5%20%2A%20U%2877%29%5D%5C%5CE_u%20%3D%20%5B0.5%20%2A%20115%5E%7B0.5%7D%5D%20%2B%20%5B0.5%20%2A%2077%5E%7B0.5%7D%5D%5C%5CE_u%20%3D%205.36%20%2B%204.39%5C%5CE_u%20%3D%20%5C%24%209.75)
The expected utility of Mary is $9.75
Mary will be willing to pay an amount P as risk premium to avoid taking the risk, where
U(EW - P) is equal to Mary's expected utility from the risky gamble.
U(EW - P) = EU
U(94 - P) = 9.63
Square root (94 - P) = 9.63
If Mary's risk premium is P, the expected utility will be given by the formula:

Mary's risk premium is $0.9375