Answer:
Is this a question or is this spamming numbers ?
If you go from point (-1, -3) to point (4, 4), you can find the slope of the line using the slope formula.

. So our slope is 7/5. The line goes through the y axis at -3/2, so putting that together we get an equation for the line that is

, choice D from above.
Answer:
The answer is 295.
Step-by-step explanation:
If you divided each volume by the number of the jelly beans, it is 2.5
Hope it helped you!
1. Let a and b be coefficients such that

Combining the fractions on the right gives



so that

2. a. The given ODE is separable as

Using the result of part (1), integrating both sides gives

Given that y = 1 when x = 1, we find

so the particular solution to the ODE is

We can solve this explicitly for y :


![\ln|y| = \ln\left|\sqrt[3]{\dfrac{5x}{2x+3}}\right|](https://tex.z-dn.net/?f=%5Cln%7Cy%7C%20%3D%20%5Cln%5Cleft%7C%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%5Cright%7C)
![\boxed{y = \sqrt[3]{\dfrac{5x}{2x+3}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%7D)
2. b. When x = 9, we get
![y = \sqrt[3]{\dfrac{45}{21}} = \sqrt[3]{\dfrac{15}7} \approx \boxed{1.29}](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B45%7D%7B21%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B15%7D7%7D%20%5Capprox%20%5Cboxed%7B1.29%7D)