Answer:
Vf₂ = 2 Vf₁
It shows that final speed of Joe is twice the final speed of Jim.
Explanation:
First, we analyze the final speed of Jim by using first equation of motion:
Vf₁ = Vi + at
where,
Vf₁ = final speed of Jim
Vi = initial speed of Jim = 0 m/s
a = acceleration of Jim
t = time of acceleration for Jim
Therefore,
Vf₁ = at ---------------- equation (1)
Now, we see the final speed of Joe. For Joe the parameters will become:
Vf = Vf₂
Vi = 0 m/s
a = a
t = 2t
Therefore,
Vf₂ = 2at
using equation (1):
<u>Vf₂ = 2 Vf₁</u>
<u>It shows that final speed of Joe is twice the final speed of Jim.</u>
For a point charge, how does the potential vary with distance from the point charge, r?
a constant
b. r.
c. 1/r.
d.
.
e.
.
Answer:
The correct option is C
Explanation:
Generally for a point charge the electric potential is mathematically represented as

Here we can deduce that the electric potential varies inversely with the distance i.e

So
Its frequency because you already found out its speed & period
The redshirting of the spectra of distant galaxies. They are moving away from us at a rate proportional to their distance