The concept needed to solve this problem is average power dissipated by a wave on a string. This expression ca be defined as

Here,
= Linear mass density of the string
Angular frequency of the wave on the string
A = Amplitude of the wave
v = Speed of the wave
At the same time each of this terms have its own definition, i.e,
Here T is the Period
For the linear mass density we have that

And the angular frequency can be written as

Replacing this terms and the first equation we have that



PART A ) Replacing our values here we have that


PART B) The new amplitude A' that is half ot the wavelength of the wave is


Replacing at the equation of power we have that


v
Convert the given temperatures from celsius to kelvin since we are dealing with gas.
To convert to kelvin, add 273.15 to the temperature in celsius.
T1 = 22 + 273.15 = 295.15 k
T2 = 4 + 273.15 = 277.15 k
V1 = 0.5 L
Let's find the final volume (V2).
To solve for V2 apply Charles Law formula below:
The smaller the atom,the larger the first I.E.
Answer:
8.76762 m
Explanation:
T = Time period = 5.94 seconds
g = Acceleration due to gravity = 9.81 m/s²
L = Length of pendulum = Height of tower
Time period is given by

The height of the tower is 8.76762 m
Explanation :
As the ambulance got closer, Marge noticed that the pitch of the siren got higher. This is due to the Doppler's effect.
The siren of the ambulance has a higher pitch when it approaches Marge. When the waves move away from him, it will have a lower pitch.
As the waves come closer to us, the waves become compressed and hence the frequency of the wave increases.