The mechanical work done by the sprinter during this time will be 4537.5 J , the average power the sprinter must generate will be 907.5 W and if the sprinter converts food energy to mechanical energy with an efficiency of 25% then he will be burning calories at 54.20 calories per second.
Work in physics is the energy that is transferred to or from an item when a force is applied along a displacement. It is frequently described in its most basic form as the result of force and displacement.
The quantity of energy moved or transformed per unit of time is known as power in physics. The watt, or one joule per second, is the unit of power in the International System of Units.. A scalar quantity is power.
Given 75-kg sprinter accelerates from rest to a speed of 11.0 m/s in 5.0 s.
So let,
m = 75 kg
v = 11.0 m/s
t = 5.0 s
So the mechanical work done by the sprinter during this time will be as follow:
W = 0.5 mv²
W = 0.5 (75)(11)²
W = 4537.5 J
The average power the sprinter must generate will be as follow:
Power(P) = W / t
P = 4537.5/5
P = 907.5 W
Only 25% is absorbed. So, the sprinter only absorbed 226.875 J per second which is equal to 54.20 calories per second.
Hence mechanical work done by the sprinter during this time will be 4537.5 J , the average power the sprinter must generate will be 907.5 W and if the sprinter converts food energy to mechanical energy with an efficiency of 25% then he will be burning calories at 54.20 calories per second.
Learn more about mechanical power here:
brainly.com/question/25573309
#SPJ10
Semi anthracite has the higest which is 29.5
Answer:
The center of mass of three mass in the x-y plane is located at (1,0.5).
Explanation:
It is given that, a mass of 6 kg is at (0,0), a mass of 4 kg is at (3,0), and a mass of 2 kg is at (0,3). We need to find the center of mass of the system. Center of mass in x direction is :

The center of mass in y direction is :

So, the center of mass of three mass in the x-y plane is located at (1,0.5).
Answer:
its luminosity (brightness) and temperature
Explanation:
Answer
given,
mass of the drop, m = 0.0014 g
speed of the drop, u = 8.1 m/s
a) Change in momentum is equal to impulse
final velocity of the drop, v = 0 m/s
J = m ( v - u )
J = 0.0014 x 10⁻³ x ( 0 - 8.1 )
J = -1.134 x 10⁻⁵ kg.m/s
impulse of the roof = - J = 1.134 x 10⁻⁵ kg.m/s
b) time, t = 0.37 m s
impact of force = ?
we know
J = F x t
1.134 x 10⁻⁵ = F x 0.37 x 10⁻³
F = 0.031 N
the magnitude of the force of the impact is equal to F = 0.031 N