Answer:
1.) 471.24
2.) 1231.5
3.) 113.1
Step-by-step explanation: A = pi x r^2 + pi x r x ^2
1.) a = 3.14 x (5)^2 + 3.14 x 5 x ^2
a = 3.14 x 25 + 3.14 x 5 x 25
a = 78.54 + 392.70
a ≈ 471.24
2.) A = 3.14 (7)^2 + 3.14 x (7) x ^2
a = 3.14 x 49 + 3.14 x 7 x 49
a = 153.93 + 1077.57
a ≈ 1231.5
3.) a = 3.14 (3)^2 + 3.14 x 3 x ^2
a = 3.14 x 9 + 3.14 x 3 x 9
a = 28.27 + 84.82
a ≈ 113.1
A's area is 4x3=12, B=2x3=6, so yes, A is twice the area of B
a Answer: YES
b Answer: One side doubled, the other stayed the same, so area doubled.
Answer:
yes, because they're varying in a constante rate
y = -1/2x +3.5
Step-by-step explanation:
since packages are similarsimilar packages. The ratio of the volumes is 8:125. Determine the dimensions of the bigger package. The dimensions of the smaller package are... Height= 45cm, Length= 80cm, and Width= 25cm.
Length of bigger package = <em><u>8</u></em><em><u>0</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>0</u></em><em><u>c</u></em><em><u>m</u></em>
Width of bigger package =<em><u>2</u></em><em><u>5</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>3</u></em><em><u>9</u></em><em><u>0</u></em><em><u>.</u></em><em><u>6</u></em><em><u>2</u></em><em><u>5</u></em><em><u>c</u></em><em><u>m</u></em>
Height of bigger package =<em><u>4</u></em><em><u>5</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>7</u></em><em><u>0</u></em><em><u>3</u></em><em><u>.</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>cm</u></em>
Answer:
The solutions are a₁ = -4/19 i, a₂ = 4/19 i and a₃ = -1/4
Step-by-step explanation:
Given the equation 76a³+19a²+16a=-4, for us to solve the equation, we need to find all the factors of the polynomial function. Since the highest degree of the polynomial is 3, the polynomial will have 3 roots.
The equation can also be written as (76a³+19a²)+(16a+4) = 0
On factorizing out the common terms from each parenthesis, we will have;
19a²(4a+1)+4(4a+1) = 0
(19a²+4)(4a+1) = 0
19a²+4 = 0 and 4a+1 = 0
From the first equation;
19a²+4 = 0
19a² = -4
a² = -4/19
a = ±√-4/19
a₁ = -4/19 i, a₂ = 4/19 i (√-1 = i)
From the second equation 4a+1 = 0
4a = -1
a₃ = -1/4