Answer:
1335.12 mL of H2O
Explanation:
To calculate the mililiters of water that the solution needs, it is necessary to know that the volume of the solution is equal to the volume of the solute (NaOH) plus the volume of the solvent (H2O).
From the molarity formula we can first calculate the volume of the solution:


The volume of the solution as we said previously is:
Solution volume = solute volume + solvent volume
To determine the volume of the solute we first obtain the grams of NaOH through the molecular weight formula:


Now with the density of NaOH the milliliters of solute can be determined:


Having the volume of the solution and the volume of the solute, the volume of the solvent H2O can be calculated:
Solvent volume = solution volume - solute volume
Solvent volume = 1429 mL - 93.88 mL = 1335.12 mL of H2O
Answer:
electrons
Explanation:
The photoelectric effect occurs when electrons are emitted from metal when the metal is struck by light of certain frequencies.
Some of the applications of this effect include photomultipliers (which are a key component in spectroscopy instruments) and night vision devices.
Answer:
43.2 moles of carbon dioxide are required and 421g of glucose could be produced
Explanation:
Based on the reaction:
6CO2 + 6H2O → C6H12O6 + 6O2
1 mole of glucose, C6H12O6, requires 6 moles of carbon dioxide. 7.2moles of glucose requires:
7.2mol C6H12O6 * (6mol CO2 / 1mol C6H12O6) =
<h3>43.2 moles of carbon dioxide are required</h3><h3 />
618g of CO2 -Molar mass: 44.01g/mol- are:
618g * (1mol / 44.01g) = 14.04moles CO2
Moles C6H12O6:
14.04moles CO2 * (1mol C6H12O6 / 6mol CO2) = 2.34moles C6H12O6
Mass glucose -Molar mass: 180.156g/mol-
2.34moles C6H12O6 * (180.156g / mol) =
<h3>421g of glucose could be produced</h3>
Answer:
Which of the following best describes the make up of Saturn's rings?(1 point) solid bands of sand and dust that formed from the start of the universe solid bands of sand and dust that formed from the start of the universe material from comets that have passed through Saturn's atmosphere material from comets that have passed through Saturn's atmosphere dust, rock, and ice particles that orbit due to Saturn's gravity dust, rock, and ice particles that orbit due to Saturn's gravity debris and rocks from other planets that orbit around Saturn