Answer:

Explanation:
This question asks us to find the temperature change given a volume change. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula is:

The volume of the gas starts at 250 milliliters and the temperature is 137 °C.

The volume of the gas is increased to 425 milliliters, but the temperature is unknown.

We are solving for the new temperature, so we must isolate the variable T₂. First, cross multiply. Multiply the first numerator and second denominator, then multiply the first denominator and second numerator.

Now the variable is being multiplied by 250 milliliters. The inverse of multiplication is division. Divide both sides of the equation by 250 mL.


The units of milliliters (mL) cancel.



The temperature changes to <u>232.9 degrees Celsius.</u>
C6H12O6 + 6 O2 --> 6 CO2 + 6 H2O
Explanation:
The given data is as follows.
, 
Work produced per kJ of heat extracted from hot reservoir = 0.45 kJ = Efficiency
If the device is Carnot cycle then its efficiency will be maximum and its value will be equal to ![[1 - (\frac{T_{c}}{T_{h}} )]](https://tex.z-dn.net/?f=%5B1%20-%20%28%5Cfrac%7BT_%7Bc%7D%7D%7BT_%7Bh%7D%7D%20%29%5D)
Using this relation we will calculate the efficiency as follows.
Efficiency = ![[1 - (\frac{T_{c}}{T_{h}} )]](https://tex.z-dn.net/?f=%5B1%20-%20%28%5Cfrac%7BT_%7Bc%7D%7D%7BT_%7Bh%7D%7D%20%29%5D)
=
= 0.928
Hence, it means that this type of device is possible and the claim is also believable.
The percent yield of the reaction : 89.14%
<h3>Further explanation</h3>
Reaction of Ammonia and Oxygen in a lab :
<em>4 NH₃ (g) + 5 O₂ (g) ⇒ 4 NO(g)+ 6 H₂O(g)</em>
mass NH₃ = 80 g
mol NH₃ (MW=17 g/mol):

mass O₂ = 120 g
mol O₂(MW=32 g/mol) :

Mol ratio of reactants(to find limiting reatants) :

mol of H₂O based on O₂ as limiting reactants :
mol H₂O :

mass H₂O :
4.5 x 18 g/mol = 81 g
The percent yield :
