1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
3 years ago
8

Which of the following is true for all chemical reactions

Chemistry
1 answer:
motikmotik3 years ago
6 0
Conservation of mass. The mass that reacts must equal the mass of the products.
You might be interested in
I NEED HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
pav-90 [236]

Answer:

4

Explanation:

4 0
2 years ago
Read 2 more answers
Why do u think perchloric acid made a hole on the glass?
natita [175]

Answer :

There is the commercial-grade, which is 70% strength in water, and it's pretty nasty stuff. It'll chew through your lab coat and give you burns you'll regret, as you'd expect from something that's rather stronger than nitric or sulfuric acid.

But it has other properties. The perchlorate anion is in a high oxidation state, and what goes up, must come down. A rapid drop in oxidation state, as chemists know, is often accompanied by loud noises and flying debris, particularly when the products formed are gaseous and have that pesky urge to expand. If you take the acid up to water-free concentrations, which is most highly not recommended, you'll probably want to wear chain mail, because it's tricky stuff. You can even go further and distill out the perchloric anhydride (dichlorine heptoxide) if you have no sense whatsoever. It's a liquid with a boiling point of around 80 C, and I'd like to shake the hand of whoever determined that property, assuming he has one left.

5 0
2 years ago
What minimum frequency of light is required to ionize boron?
Nadusha1986 [10]

Answer:

frequency  = 8.22 x 10¹⁴ s⁻¹

Explanation:

An electron's positional potential energy while in a given principle quantum energy level is given by Eₙ = - A/n² and A = constant = 2.18 x 10⁻¹⁸j. So to remove an electron from the valence level of Boron (₅B), energy need be added to promote the electron from n = 2 to n = ∞. That is, ΔE(ionization) = E(n=∞) - E(n=2) = (-A/(∞)²) - (-A/(2)²) = [2.18 x 10⁻¹⁸j/4] joules = 5.45 x 10⁻¹⁹ joules.

The frequency (f) of the wave ionization energy can then be determined from the expression ΔE(izn) = h·f; h = Planck's Constant = 6.63 x 10⁻³⁴j·s. That is:

ΔE(izn) = h·f => f = ΔE(izn)/h = 5.45 x 10⁻¹⁹ j/6.63 x 10⁻³⁴ j·s = 8.22 x 10¹⁴ s⁻¹

3 0
2 years ago
3. After 7.9 grams of sodium are dropped into a bathtub full of water, how many grams of hydrogen gas are released?
Pavel [41]

Answer:

3) About 0.35 grams of hydrogen gas.

4) About 65.2 grams of aluminum oxide.

Explanation:

Question 3)

We are given that 7.9 grams of sodium is dropped into a bathtub of water, and we want to determine how many grams of hydrogen gas is released.

Since sodium is higher than hydrogen on the activity series, sodium will replace hydrogen in a single-replacement reaction for sodium oxide. Hence, our equation is:

\displaystyle \text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To balance it, we can simply add another sodium atom on the left. Hence:

\displaystyle 2\text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To convert from grams of sodium to grams of hydrogen gas, we can convert from sodium to moles of sodium, use the mole ratios to find moles in hydrogen gas, and then use hydrogen's molar mass to find its amount in grams.

The molar mass of sodium is 22.990 g/mol. Hence:

\displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}

From the chemical equation, we can see that two moles of sodium produce one mole of hydrogen gas. Hence:

\displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}

And the molar mass of hydrogen gas is 2.016 g/mol. Hence:

\displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Given the initial value and the above ratios, this yields:

\displaystyle 7.9\text{ g Na}\cdot \displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}\cdot \displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Cancel like units:

=\displaystyle 7.9\cdot \displaystyle \frac{1}{22.990}\cdot \displaystyle \frac{1}{2}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1}

Multiply. Hence:

=0.3463...\text{ g H$_2$}

Since we should have two significant values:

=0.35\text{ g H$_2$}

So, about 0.35 grams of hydrogen gas will be released.

Question 4)

Excess oxygen gas is added to 34.5 grams of aluminum and produces aluminum oxide. Hence, our chemical equation is:

\displaystyle \text{O$_2$} + \text{Al} \rightarrow \text{Al$_2$O$_3$}

To balance this, we can place a three in front of the oxygen, four in front of aluminum, and two in front of aluminum oxide. Hence:

\displaystyle3\text{O$_2$} + 4\text{Al} \rightarrow 2\text{Al$_2$O$_3$}

To convert from grams of aluminum to grams of aluminum oxide, we can convert aluminum to moles, use the mole ratios to find the moles of aluminum oxide, and then use its molar mass to determine the amount of grams.

The molar mass of aluminum is 26.982 g/mol. Thus:

\displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}

According to the equation, four moles of aluminum produces two moles of aluminum oxide. Hence:

\displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}

And the molar mass of aluminum oxide is 101.961 g/mol. Hence: \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Using the given value and the above ratios, we acquire:

\displaystyle 34.5\text{ g Al}\cdot \displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}\cdot \displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Cancel like units:

\displaystyle= \displaystyle 34.5\cdot \displaystyle \frac{1}{26.982}\cdot \displaystyle \frac{2}{4}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1}

Multiply:

\displaystyle = 65.1852... \text{ g Al$_2$O$_3$}

Since the resulting value should have three significant figures:

\displaystyle = 65.2 \text{ g Al$_2$O$_3$}

So, approximately 65.2 grams of aluminum oxide is produced.

5 0
2 years ago
Read 2 more answers
0.0200 moles of a compound is found to have a mass of 1.64 g. Find the formula mass of the compound
KatRina [158]

Answer: 82.0 g/mole

Explanation:

Use the units to see that if we divide 1.64 grams by 0.0200 moles, we'll get a number that is grams/mole, the definition of formula mass.

1.64/0.0200 = 82.0 g/mole (3 sig figs)

We can't tell from this alone what the molecular formula might be, but C6H10 (cyclohexene) comes close (82.1 grams/mole).

3 0
2 years ago
Other questions:
  • Limestone is composed almost entirely of calcite which has the chemical formula caco 3. As a result, limestone is classified as
    12·1 answer
  • What are the characteristics of a substance in the gas phase?
    8·1 answer
  • Zn(s) + HCl(aq) → ZnCl2(aq) + H2(g) ↑
    14·1 answer
  • What is the molarity of a solution made with 400 grams of copper II chloride in 3.5 liters of water?
    6·1 answer
  • What is the pressure of the air in a car tire (in psi) if it is 1.73 atm?
    8·1 answer
  • All living things contain _________ in proteins, fats, and carbohydrates which can be recycled in various ways within an environ
    15·2 answers
  • What is consciousness? ...​
    7·2 answers
  • Please answer's these scientist answer's
    6·2 answers
  • A room is filled with 45.0 kg of Nitrogen gas (N2). If the temperature of the gas is 26.0 degrees C and has a pressure of 794 to
    13·1 answer
  • How can water change? I or change into a If 1-Heat causes water toi 2-Water that goes into the alr is called tral air makrs wate
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!