I don’t see any equal signs to make it an equation. Am I missing something?
Kilometers, Meters and centimeters if metric
Feet, inches, yards and miles if customary ( u.s.)
Answer: There are three main places where volcanoes originate: Hot spots, Divergent plate boundaries (such as rifts and mid-ocean ridges), and. Convergent plate boundaries (subduction zones)
Explanation:
Volcanoes often form in the areas where tectonic plates make contact. The friction created between two plates by the constant movement melts the Earth's crust, causing the rock underneath the crust to turn into magma due to the great temperatures created by friction. ... Volcanoes may be formed at subduction zones
Answer:
(a) 
(b) 
(c) 
(d) 
Explanation:
Hello,
In this case, given the solubility of each salt, we can compute their molar solubilities by using the molar masses. Afterwards, by using the mole ratio between ions, we can compute the concentration of each dissolved and therefore the solubility product:
(a) 

In such a way, as barium and selenate ions are in 1:1 molar ratio, they have the same concentration, for which the solubility product turns out:
![Ksp=[Ba^{2+}][SeO_4^{2-}]=(6.7x10^{-4}\frac{mol}{L} )^2\\\\Ksp=4.50x10^{-7}](https://tex.z-dn.net/?f=Ksp%3D%5BBa%5E%7B2%2B%7D%5D%5BSeO_4%5E%7B2-%7D%5D%3D%286.7x10%5E%7B-4%7D%5Cfrac%7Bmol%7D%7BL%7D%20%20%20%29%5E2%5C%5C%5C%5CKsp%3D4.50x10%5E%7B-7%7D)
(B) 

In such a way, as barium and bromate ions are in 1:2 molar ratio, bromate ions have twice the concentration of barium ions, for which the solubility product turns out:
![Ksp=[Ba^{2+}][BrO_3^-]^2=(7.30x10^{-3}\frac{mol}{L})(3.65x10^{-3}\frac{mol}{L})^2\\\\Ksp=1.55x10^{-6}](https://tex.z-dn.net/?f=Ksp%3D%5BBa%5E%7B2%2B%7D%5D%5BBrO_3%5E-%5D%5E2%3D%287.30x10%5E%7B-3%7D%5Cfrac%7Bmol%7D%7BL%7D%29%283.65x10%5E%7B-3%7D%5Cfrac%7Bmol%7D%7BL%7D%29%5E2%5C%5C%5C%5CKsp%3D1.55x10%5E%7B-6%7D)
(C) 

In such a way, as ammonium, magnesium and arsenate ions are in 1:1:1 molar ratio, they have the same concentrations, for which the solubility product turns out:
![Ksp=[NH_4^+][Mg^{2+}][AsO_4^{3-}]^2=(1.31x10^{-4}\frac{mol}{L})^3\\\\Ksp=2.27x10^{-12}](https://tex.z-dn.net/?f=Ksp%3D%5BNH_4%5E%2B%5D%5BMg%5E%7B2%2B%7D%5D%5BAsO_4%5E%7B3-%7D%5D%5E2%3D%281.31x10%5E%7B-4%7D%5Cfrac%7Bmol%7D%7BL%7D%29%5E3%5C%5C%5C%5CKsp%3D2.27x10%5E%7B-12%7D)
(D) 

In such a way, as the involved ions are in 2:3 molar ratio, La ion is twice the molar solubility and MoOs ion is three times it, for which the solubility product turns out:
![Ksp=[La^{3+}]^2[MoOs^{-2}]^3=(2*1.58x10^{-5}\frac{mol}{L})^2(3*1.58x10^{-5}\frac{mol}{L})^3\\\\Ksp=1.05x10^{-22}](https://tex.z-dn.net/?f=Ksp%3D%5BLa%5E%7B3%2B%7D%5D%5E2%5BMoOs%5E%7B-2%7D%5D%5E3%3D%282%2A1.58x10%5E%7B-5%7D%5Cfrac%7Bmol%7D%7BL%7D%29%5E2%283%2A1.58x10%5E%7B-5%7D%5Cfrac%7Bmol%7D%7BL%7D%29%5E3%5C%5C%5C%5CKsp%3D1.05x10%5E%7B-22%7D)
Best regards.
a) Alpha decay occurs when an unstable nuclide emits an alpha particle, (which is just a helium-4 atom), which contains 2 protons and 4 neutrons. This means that transmutation has occurred (since a nuclide of a different element will be produced), and this newly produced nuclide will have 2 fewer protons and 4 fewer neutrons than the original nuclide.
b) 
c) Alpha decay occurs when an unstable nuclide emits a beta particle, (also known as an electron). This causes transmutation (since a nuclide of a different element will be produced), and this newly produced nuclide will have 1 more proton than the original nuclide.
d) 