Answer:
The equation does not have a real root in the interval ![\rm [0,1]](https://tex.z-dn.net/?f=%5Crm%20%5B0%2C1%5D)
Step-by-step explanation:
We can make use of the intermediate value theorem.
The theorem states that if
is a continuous function whose domain is the interval [a, b], then it takes on any value between f(a) and f(b) at some point within the interval. There are two corollaries:
- If a continuous function has values of opposite sign inside an interval, then it has a root in that interval. This is also known as Bolzano's theorem.
- The image of a continuous function over an interval is itself an interval.
Of course, in our case, we will make use of the first one.
First, we need to proof that our function is continues in
, which it is since every polynomial is a continuous function on the entire line of real numbers. Then, we can apply the first corollary to the interval
, which means to evaluate the equation in 0 and 1:

Since both values have the same sign, positive in this case, we can say that by virtue of the first corollary of the intermediate value theorem the equation does not have a real root in the interval
. I attached a plot of the equation in the interval
where you can clearly observe how the graph does not cross the x-axis in the interval.
Let's write miles over hours
80 / 2 = 200/ x
cross multiply
80x = 400
divide both sides by 80
x = 5
It will take 5 hours to cover 200 miles
Hope this helps :)
Angles of a triangle add up to 180 degrees and then we take away the right angle
180-90=90
5x+5x=10x
90/10=9
x=9
Answer:
25
Step-by-step explanation:
subtract 8 from each side of the equation
2h=50
divide both sides by 2
h=25