Answer:
36
Step-by-step explanation:
3 * 12 = 36
if there are 12 girls and 3 times more wore dress then 3 times 12 is 36.
Answer:
x4+7x3-2x2-9x-3 remainder -10
or we could write it as
x4+7x3-2x2-9x-3 - 10/(x+8)
Step-by-step explanation:
x+8 ) x5+15x4+54x3−25x2−75x−34 (x4+7x3-2x2-9x-3 <--- Quotient.
x5+ 8x4
7x4+54x3
7x4+56x3
-2x3-25x2
-2x3-16x2
-9x2-75x
-9x2-72x
-3x-34
-3x-24
-10 <--- Remainder.
Any value? you could use 0 or 1 or 2. All three of these are a group of many that would wokr. Any would work!
-$12.99
That should be it, hit me up for any additional questions
Below is the solution, I hope it helps.
<span>i) tan(70) - tan(50) = tan(60 + 10) - tan(60 - 10)
= {tan(60) + tan(10)}/{1 - tan(60)*tan(10)} - {tan(60) - tan(10)}/{1 + tan(10)*tan(60)}
ii) Taking LCM & simplifying with applying tan(60) = √3, the above simplifies to:
= 8*tan(10)/{1 - 3*tan²(10)}
iii) So tan(70) - tan(50) + tan(10) = 8*tan(10)/{1 - 3*tan²(10)} + tan(10)
= [8*tan(10) + tan(10) - 3*tan³(10)]/{1 - 3*tan²(10)}
= [9*tan(10) - 3*tan³(10)]/{1 - 3*tan²(10)}
= 3 [3*tan(10) - tan³(10)]/{1 - 3*tan²(10)}
= 3*tan(30) = 3*(1/√3) = √3 [Proved]
[Since tan(3A) = {3*tan(A) - tan³(A)}/{1 - 3*tan²(A)},
{3*tan(10) - tan³(10)}/{1 - 3*tan²(10)} = tan(3*10) = tan(30)]</span>