Answer:
A task time of 177.125s qualify individuals for such training.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X. Subtracting 1 by the pvalue, we This p-value is the probability that the value of the measure is greater than X.
In this problem, we have that:
A distribution that can be approximated by a normal distribution with a mean value of 145 sec and a standard deviation of 25 sec, so
.
The fastest 10% are to be given advanced training. What task times qualify individuals for such training?
This is the value of X when Z has a pvalue of 0.90.
Z has a pvalue of 0.90 when it is between 1.28 and 1.29. So we want to find X when
.
So




A task time of 177.125s qualify individuals for such training.
1) The variables are "k"
2) There are 4 terms
3) The coefficients are k
4) The constants are -7, 3, 10, -5
5) The like terms is -7k, 3k, 10k, -5k
The answers are pretty direct but, hope this answers your question.
Have a great day/night!
Answer:
The equation
represents the equation of the parabola with focus (-3, 3) and directrix y = 7.
Step-by-step explanation:
To find the equation of the parabola with focus (-3, 3) and directrix y = 7. We start by assuming a general point on the parabola (x, y).
Using the distance formula
, we find that the distance between (x, y) is

and the distance between (x, y) and the directrix y = 7 is
.
On the parabola, these distances are equal so, we solve for y:

Answer:
0.966
Step-by-step explanation:
Given that:
Probability of DVD player breaking down before the warranty expires = 0.034
To find:
The probability that the player will not break down before the warranty expires = ?
Solution:
Here, The two events are:
1. The DVD player breaks down before the warranty gets expired.
2. The DVD player breaks down after the warranty gets expired
In other words, the 2nd event can be stated as:
The DVD does not break down before the warranty gets expired.
The two events here, have nothing in common i.e. they are mutually exclusive events.
So, Sum of their probabilities will be equal to 1.

Answer:
.8
Step-by-step explanation: