1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
3 years ago
7

Graph in slope intercept form 2x-5y=5

Mathematics
1 answer:
elena55 [62]3 years ago
4 0

y=\frac{2}{5}x-1

You might be interested in
Need help ASAP NO LINKS
matrenka [14]

Answer:

9

Step-by-step explanation:

5(n-2)=35

5n-10=35

5n=35+10

5n=45

n=45/5

n=9

Please mark me as brainliest

6 0
3 years ago
Read 2 more answers
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
Which expression is equivalent to log Subscript c Baseline StartFraction x squared minus 1 Over 5 x EndFraction?
Harrizon [31]

The equivalent expression of \log_c(\frac{x^2 - 1}{5x}) is \log_c(x^2 - 1) - \log_c(5x)

<h3>How to determine the equivalent expression?</h3>

The logarithmic expression is given as:

\log_c(\frac{x^2 - 1}{5x})

The law of logarithm states that:

log(a) - log(b) = log(a/b)

This means that the expression can be split as:

\log_c(\frac{x^2 - 1}{5x}) = \log_c(x^2 - 1) - \log_c(5x)

Hence, the equivalent expression of \log_c(\frac{x^2 - 1}{5x}) is \log_c(x^2 - 1) - \log_c(5x)

Read more about equivalent expression

brainly.com/question/2972832

#SPJ1

3 0
2 years ago
Find limit as x approaches 2 from the left of the quotient of the absolute value of the quantity x minus 2, and the quantity x m
Molodets [167]

Answer:

\lim_{x \to 2^-} \frac{|x-2|}{x-2}=-1.

Step-by-step explanation:

We want to find \lim_{x \to 2^-} \frac{|x-2|}{x-2}.

By definition:

|x-2|=\left \{ {{x-2,\:if\:x\:>\:2} \atop {-(x-2),\:if\:x\:

Since we want to find the Left Hand Limit, we use f(x)=-(x-2)

\implies \lim_{x \to 2^-} \frac{|x-2|}{x-2}=\lim_{x \to 2} \frac{-(x-2)}{x-2}.

\implies \lim_{x \to 2^-} \frac{|x-2|}{x-2}=\lim_{x \to 2} (-1).

The limit of a constant is the constant.

\implies \lim_{x \to 2^-} \frac{|x-2|}{x-2}=-1.

8 0
3 years ago
Question 20 fast please
kipiarov [429]

Answer:

Square root of 4 is 2

so  1+\frac{[1+\sqrt{2x-1]}^2 }{4}=4

frac{[1+sqrt{2x-1]}^2 }{4}=3

so 1+sqrt{2x-1]}^2=12

so 1+sqrt{2x-1}=V12

sqrt{2x-1}=V12-1

2x-1=(V12-1)^2=12-2V12+1=13-2V12

2x=13+1-2V12

2x=14-2V12

x=7-V12

x=7-2V3

I put an attachment to explain better

   

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • The potential energy, P, in a spring is represented using the formula P = 1/2kx2. Lupe uses an equivalent equation, which is sol
    9·2 answers
  • 5) Two machines M1, M2 are used to manufacture resistors with a design
    12·1 answer
  • A baker uses 2/3 of canister flour to bake 4 loaves how much flour does the baker need to make 3 loaves
    7·1 answer
  • The Value of X________
    5·1 answer
  • Help please!<br> Evaluate the following expressions using the Order of Operations.
    9·1 answer
  • x^2=6x+1 rewrite the equation by completing the square your equation should look like (x+a)^2=b or (x-c)^2=d
    8·1 answer
  • 7. The terminal side of theta, and angle in standard position, intersects the unit circle at
    11·1 answer
  • 3, 6, 11, 18, 27, … What is the 12th term of the sequence?
    14·2 answers
  • Help I will be marking brainliest!!!
    9·2 answers
  • Doing Corrections <br> #14 plz and thank you
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!