The horizontal component of the velocity of the ball is calculated by multiplying the speed by the cosine of the given angle.
x-component of speed = (31 m/s)(cos 35°)
= 25.39 m/s
Thus, the horizontal velocity component of the ball is 25.39 m/s.
Heavy crate sits at rest on the floor of a warehouse. you push on the crate with a force of 400 N, and it doesn't budge. The magnitude of the friction force on the crate in Newton is 400N
This is due to Friction force, which is defined as the resisting force that acts on a body when it is at rest (Static friction) or when it is in motion (Kinetic friction).
When a force is applied on a stationary body, the force of static friction starts to act on the body which prevents any relative motion between the object and surface. The magnitude of friction increases up to μsN, where μs is the coefficient of static friction. As the crate didn't budge, it means the amount of force applied was less than μsN. Hence the force applied was canceled by an equal and opposite amount of frictional force which was equal to 400N.
Learn more about frictional force here
brainly.com/question/1714663
#SPJ4
Answer:
In collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.
Explanation:
In a collision two objects, there is a force exerted on both objects that causes an acceleration of both objects. These forces that act on both objects are equal in magnitude and opposite in direction.
Thus, in collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.
Answer: 6 and 8 would be side lengths because if it has a scale factor of 2 then you multiply the ones on the chart.
Explanation:Go find one
Answer:
How much kinetic energy does a 4 Kg cat have while running at 9 m/s?
its 5 J of kinetic energy.
Explanation: