The answer is 385mi. 110mi/2hr = 55mi/1hr=385mi/7hr
Answer:
b) 6.68%
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean score on the scale is 50. The distribution has a standard deviation of 10.
This means that 
Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale?
The proportion is 1 subtracted by the p-value of Z when X = 65. So



has a p-value of 0.9332.
1 - 0.9332 = 0.0668
0.0668*100% = 6.68%
So the correct answer is given by option b.
Answer:
Step-by-step explanation:
To define the perpendicular line we need to first know the slope of the reference line graphed.
m=(y2-y1)/(x2-x1) we have points (0,5) and (2,1)
m=(1-5)/(2-0)
m=-4/2
m=-2
For lines to be perpendicular their slopes must satisfy
m1m2=-1, we have a line with a slope of -2 so
-2m=-1
m=1/2, so our perpendicular line is so far
y=x/2+b, it must have point (3,2) so we can solve for b
2=3/2+b
b=1/2, so the swimmer will travel along the line
y=x/2+1/2
Given:
bottom of the plank or ground is 9 feet from the wall
length of the plant is 41 ft
height of the wall is unknown.
Let us use the Pythagorean theorem.
a² + b² = c²
a² + (9ft)² = (41ft)²
a² + 81 ft² = 1,681 ft²
a² = 1,681 ft² - 81 ft²
a² = 1,600 ft²
√a² = √1,600 ft²
a = 40 ft
The height of the wall is 40 ft.