To have infinitely many solutions they must describe the same line. So any multiple or fraction of the reference line would indeed describe the same line, and thus "intersect" at each and every of an infinite number of points.
2(x+y=4)
2x+2y=8 (is the same line as x+y=4)
Answer:
Remember that a perfect square trinomial can be factored into the form (a+b)^2
or (a-b)^2
Examples:
(x+2)(x+2) is a perfect sq trinomial --> x^2+4x+4
(x-3)(x-3) is a perfect sq trinomial --> x^2-6x+9
(x+2)(x-3) is not a perfect square trinomial because its not in the form (a+b)^2 or (a-b)^2
Now to answer your question,
for the first one, x^2-16x-64, you cannot factor it so it is not a perfect square trinomial
for the second one, 4x^2 + 12x + 9, you can factor that into (2x+3)(2x+3) = (2x+3)^2 so this is a perfect square trinomial
for the third one, x^2+20x+100 can be factored into (x+10)(x+10) so this is also a perfect square trinomial
for the fourth one, x^2+4x+16 cannot be factored so this is not a perfect square trinomial
Therefore, your answer is choices 2 and 3
Read more on Brainly.com - brainly.com/question/10522355#readmore
Step-by-step explanation:
Answer:
The average temperature is 
Step-by-step explanation:
From the question we are told that
The temperature of the coffee after time t is ![T(t) = 25 + 72 e^{[-\frac{t}{45} ]}](https://tex.z-dn.net/?f=T%28t%29%20%3D%20%2025%20%2B%2072%20e%5E%7B%5B-%5Cfrac%7Bt%7D%7B45%7D%20%5D%7D)
Now the average temperature during the first 22 minutes i.e fro
minutes is mathematically evaluated as
![T_{a} = \frac{1}{22-0} \int\limits^{22}_{0} {25 +72 e^{[-\frac{t}{45} ]}} \, dx](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%20%5Cfrac%7B1%7D%7B22-0%7D%20%20%5Cint%5Climits%5E%7B22%7D_%7B0%7D%20%7B25%20%2B72%20e%5E%7B%5B-%5Cfrac%7Bt%7D%7B45%7D%20%5D%7D%7D%20%5C%2C%20dx)
![T_{a} = \frac{1}{22} [25 t + 72 [\frac{e^{[-\frac{t}{45} ]}}{-\frac{1}{45} } ] ] \left| 22} \atop {0}} \right.](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%5Cfrac%7B1%7D%7B22%7D%20%5B25%20t%20%20%2B%20%2072%20%5B%5Cfrac%7Be%5E%7B%5B-%5Cfrac%7Bt%7D%7B45%7D%20%5D%7D%7D%7B-%5Cfrac%7B1%7D%7B45%7D%20%7D%20%5D%20%5D%20%5Cleft%7C%2022%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![T_{a} = \frac{1}{22} [25 t - 3240e^{[-\frac{t}{45} ]} ] \left | 45} \atop {{0}} \right.](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%5Cfrac%7B1%7D%7B22%7D%20%5B25%20t%20%20-%203240e%5E%7B%5B-%5Cfrac%7Bt%7D%7B45%7D%20%5D%7D%20%5D%20%5Cleft%20%7C%2045%7D%20%5Catop%20%7B%7B0%7D%7D%20%5Cright.)
![T_{a} = \frac{1}{22} [25 (22) - 3240e^{[-\frac{22}{45} ]} - (- 3240e^{0} )]](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%5Cfrac%7B1%7D%7B22%7D%20%5B25%20%2822%29%20%20-%203240e%5E%7B%5B-%5Cfrac%7B22%7D%7B45%7D%20%5D%7D%20%20%20-%20%28-%203240e%5E%7B0%7D%20%29%5D)
![T_{a} = \frac{1}{22} [550 - 1987.12 + 3240]](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%5Cfrac%7B1%7D%7B22%7D%20%5B550%20%20-%201987.12%20%20%2B%20%203240%5D)
