Answer:
congruent
Step-by-step explanation:
All sides are the same length (congruent) and all interior angles are the same size (congruent). To find the measure of the interior angles, we know that the sum of all the angles is 540 degrees (from above)... And there are five angles... So, the measure of the interior angle of a regular pentagon is 108 degrees.
Answer:
√(2 + √3)/4
Step-by-step explanation:
Sine 5π/12 = Sine (5π/6)/2
Recall
π = 180°
Thus,
Sine (5π/6)/2 = Sine (5×180 /6)/2
= Sine 150/2
Recall
Sine θ/2 = √(1 – Cos θ)/2
Thus,
Sine 150/2 = √(1 – Cos 150)/2
But, Cosine is negative in the 2nd quadrant. Thus,
Cos 150 = – Cos 30 = –√3/2
Thus,
√(1 – Cos 150)/2 = √(1 – –√3/2 )/2
= √(1 + √3/2 )/2
= √[(2 + √3)/2 ÷ 2]
= √[(2 + √3)/2 × 1/2]
= √(2 + √3)/4
Therefore,
Sine 5π/12 = √(2 + √3)/4
You have shared the situation (problem), except for the directions: What are you supposed to do here? I can only make a educated guesses. See below:
Note that if <span>ax^2+bx+5=0 then it appears that c = 5 (a rational number).
Note that for simplicity's sake, we need to assume that the "two distinct zeros" are real numbers, not imaginary or complex numbers. If this is the case, then the discriminant, b^2 - 4(a)(c), must be positive. Since c = 5,
b^2 - 4(a)(5) > 0, or b^2 - 20a > 0.
Note that if the quadratic has two distinct zeros, which we'll call "d" and "e," then
(x-d) and (x-e) are factors of ax^2 + bx + 5 = 0, and that because of this fact,
- b plus sqrt( b^2 - 20a )
d = ------------------------------------
2a
and
</span> - b minus sqrt( b^2 - 20a )
e = ------------------------------------
2a
Some (or perhaps all) of these facts may help us find the values of "a" and "b." Before going into that, however, I'm asking you to share the rest of the problem statement. What, specificallyi, were you asked to do here?
The length of the rug would be 18m
LxW=A
14x18=252
Find out yourself.best of luck