Answer:
Step-by-step explanation:
Hello!
Given the variables
X: daily hotel room rate
Y: amount spent on the entertainment
See second attachment for scatter plot.
The population regression equation is E(Yi)= α + βXi
To estimate the y-intercept and the slope of the regression equation you have to apply the following formulas:
![b= \frac{sum XY-\frac{(sumX)(sumY)}{n} }{sumX^2-\frac{(sumX)^2}{n} }](https://tex.z-dn.net/?f=b%3D%20%5Cfrac%7Bsum%20XY-%5Cfrac%7B%28sumX%29%28sumY%29%7D%7Bn%7D%20%7D%7BsumX%5E2-%5Cfrac%7B%28sumX%29%5E2%7D%7Bn%7D%20%7D)
a= Y[bar]-bX[bar]
n= 9; ∑X= 945; ∑X²= 103325; ∑Y= 1134 ∑Y²= 148804; ∑XY= 123307
X[bar]= ∑X/n= 945/9= 105
Y[bar]= ∑Y/n= 1134/9= 126
![b= \frac{123307-\frac{945*1134}{9} }{103325-\frac{(945)^2}{9} }= 1.03](https://tex.z-dn.net/?f=b%3D%20%5Cfrac%7B123307-%5Cfrac%7B945%2A1134%7D%7B9%7D%20%7D%7B103325-%5Cfrac%7B%28945%29%5E2%7D%7B9%7D%20%7D%3D%201.03)
a= 126 - 1.03*105= 17.49
^Y= 17.49 + 1.03Xi
Slope interpretation: The estimated average amount spent on entertainment increases 1.03 every time the daily hotel room rate increases one unit.
If the room rate for Chicago is $128 (X), to predict the mount spent in entertainment (Y) you have replace it in the estimated regression line:
^Y= 17.49 + 1.03Xi= 17.49 + 1.03*128= 149.33
The expected amount spent on entertainment for Chicago is $149.33
I hope this helps!