Bugs with shorter bills had more access to sustenance, enabling them to deliver all the more posterity. Bugs that happened to have short breaks were better ready to feast upon the little organic products. Their expanded access to nourishment enabled them to deliver all the more posterity, which likewise had little snouts. In any case, bugs with little bills did not emerge so as to feast upon the little natural products. Transformative change comes to fruition as the extent of people in the populace showing a specific characteristic increments from age to age. The characteristic does not change step by step in all individuals from the populace.
Answer:
E. All the answer options are correct.
Explanation:
Cilia are very small hair-like, membrane-bound cell structures. They are present on the surface of many eukaryotic cells. They are made of microtubules and are continuous with the plasma membrane of a cell. On a single cell, they are present in large numbers as compared to flagella. The major function of cilia is to move the cell or to move substances such as mucous, fluid over or around the cell.
There are sometimes similarities in the embryonic stages of organisms that do not exist in the adult stages.
Answer:
The carbon cycle describes the process in which carbon atoms continually travel from the atmosphere to the Earth and then back into the atmosphere. Since our planet and its atmosphere form a closed environment, the amount of carbon in this system does not change.
Explanation:
Explanation:
Wind energy, or wind power, is created using a wind turbine, a device that channels the power of the wind to generate electricity. The wind blows the blades of the turbine, which are attached to a rotor. The rotor then spins a generator to create electricity . Wind energy is a renewable energy source that is clean and has very few environmental challenges. Wind power actually starts with the Sun. In order for the wind to blow, the Sun first heats up a section of land along with the air above it. That hot air rises since a given volume of hot air is lighter than the same volume of cold air. Cooler air then rushes in to fill the void left by that hot air and voila: a gust of wind. The Office of Energy Efficiency and Renewable Energy describes a wind turbine as “the opposite of a fan.” Simply stated, the turbine takes the energy in that wind and converts it into electricity. So how does it do that? First, the wind applies pressure on the long slender blades, usually 2 or 3 of them, causing them to spin, much like the wind pushes a sailboat along its path through the water. The spinning blades then cause the rotor, or the conical cap on the turbine, and an internal shaft to spin as well at somewhere around 30 – 60 revolutions per minute. The ultimate goal is to spin an assembly of magnets in a generator which will, well, generate voltage in a coil of wire thanks to electromagnetic induction. Generators require faster revolutions, however, so a gear box typically connects this lower speed shaft to a higher speed shaft by increasing the spin rate to around 1000 to 1800 revolutions per minute. These gear boxes are costly as well as heavy, so engineers are looking to design more “direct-drive” generators that can work at the lower speeds.