Answer: The statement, atoms in the sand were moving more quickly best describes why the temperature of the sand increased.
Explanation:
As Sun rises in the morning everyday and the heat energy radiations given by the Sun falls on a number of objects on our surroundings. As a result, the objects absorb this heat energy till afternoon due to which they become hot.
Hence, atoms of the objects gain kinetic energy due to which they move quickly. This shows that the temperature of the object (sand here) increases.
When Maria walked in the same area in the afternoon, the sand was hot as its particles have gained kinetic energy due to which they move rapidly from one place to another. Hence, sand feels more hot in the afternoon in the same area where she walked.
Thus, we can conclude that the statement the atoms in the sand were moving more quickly best describes why the temperature of the sand increased.
Answer:
0.244 M.
Explanation:
From the question given above, the following data were obtained:
Molarity of stock solution (M₁) = 1 M
Volume of stock solution (V₁) = 0.305 L
Volume of diluted solution (V₂) = 1.25 L
Molarity of diluted solution (M₂) =?
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
1 × 0.305 = M₂ × 1.25
0.305 = M₂ × 1.25
Divide both side by 1.25
M₂ = 0.305 / 1.25
M₂ = 0.244 M
Thus, the molarity of the diluted solution is 0.244 M
By Pleistocene ice age is meant the glacial periods that appeared in the Pleistocene. The Pleistocene is the first epoch of the Quaternary. It is an epoch when there was a so called ''ice age'' on the Earth, or rather a glacial period. During this ice age the planet had much lower temperatures on a global scale. The climate was also much drier. Lot of ocean water was frozen in the ice sheets that were stretching deep into the North American and Eurasian continents, which resulted in much lower sea levels that today as well. The places further north than 40 degrees of latitude were almost exclusively covered with ice, so life was almost impossible apart from some coastline places.
A. Sodium is correct.
Sodium is an alkali metal.
Aluminum is a post-transitional metal- still a metal but it’s character is not as metallic as sodium.
Silicon is a metalloid- it has characteristics from both the metals and the non-metals.
Phosphorous is a non-metal.
Unfortunately the data provided doesn't include the DENSITY of the ammonium chloride solution and molarity is defined as moles per volume. So without the density, the calculation of the molarity is impossible. But fortunately, there are tables available that do provide the required density and for a 20% solution by weight, the density of the solution is 1.057 g/ml.
So 1 liter of solution will mass 1057 grams and the mass of ammonium chloride will be 0.2 * 1057 g = 211.4 g. The number of moles will then be 211.4 g / 53.5 g/mol = 3.951401869 mol. Rounding to 3 significant digits gives a molarity of 3.95.
Now assuming that your teacher wants you to assume that the solution masses 1.00 g/ml, then the mass of ammonium chloride will only be 200g, and that is only (200/53.5) = 3.74 moles.
So in conclusion, the expected answer is 3.74 M, although the correct answer using missing information is 3.95 M.