In the Lewis structure, each single bond drawn between elements contain two electrons. The electron dots represent the lone pairs. These are the electrons that take part in the reaction. To obey the octet rule, the oxygen must have eight electrons around it. The hydrogen is exempted from this rule. Therefore, you have to show two electrons.
Hey there!:
Molar mass H3PO4 = <span>97.9952 g/mol
Atomic Masses :
H = </span><span>1.00794 a.m.u
</span>P = <span>30.973762 a.m.u
</span>O = 15.9994 a.m.u<span>
H % = [ ( 1.00794 * 3 ) / </span> 97.9952 ] * 100
H% = <span>3.0857 %
P % = [ ( </span>30.973762 * 1 ) / 97.9952 ] * 100
P% = <span>31.6074 %
O % = [ ( </span>15.9994 * 4 ) / 97.9952 ] * 100
O% = <span>65.3069 %
Hope this helps!</span>
Based on the data provided;
- number of moles of helium gas is 1.25 moles
- pressure at peak temperature is 259.3 kPa
- internal pressure is above 256 kPa, therefore, the balloon will burst.
- pressure should be reduced to a value less than 256 kPa by reducing the temperature
<h3>What is the ideal has equation?</h3>
The ideal gas equation relatesthe pressure, volume, moles and temperature of a gas.
The moles of helium gas is calculated using the Ideal gas equation:
n is the number of moles of gas
R is molar gas constant = 8.314 L⋅kPa/Kmol
P is pressure = 239 kPa
T is temperature = 21°C = 294 K
V is volume = 12.8 L
Therefore;
n = PV/RT
n = 239 × 12.8 / 8.314 × 294
n = 1.25 moles
The number of moles of helium gas is 1.25 moles
At peak temperature, T = 46°C = 319 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 319/294
P2 = 259.3 kPa
The pressure at peak temperature is 259.3 kPa
At 42°C, T = 315 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 315/294
P2 = 256.07 kPa
Since the internal pressure is above 256 kPa, the balloon will burst.
The pressure should be reduced to a value less than 256 kPa by reducing the temperature.
Learn more about gas ideal gas equation at: brainly.com/question/12873752
If 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
<h3>How to calculate volume?</h3>
The volume of a gas at STP can be calculated using the direct proportion method.
According to this question, 50.75 g of a gas occupies 10.0 L at STP, then 129.3g of the same gas will occupy the following:
= 129.3 × 10/50.75
= 25.48L
Therefore, if 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
Learn more about volume at: brainly.com/question/12357202
#SPJ1
Answer:
The much higher power density offered by lithium ion batteries is a distinct advantage. Electric vehicles also need a battery technology that has a high energy density. ... Lithium ion cells is that their rate of self-discharge is much lower than that of other rechargeable cells such as Ni-Cad and NiMH forms.
Put this into your own words or teachers will make you redo it