Answer:
h(x) = 3(x - 5)^2 + 6.
Step-by-step explanation:
g(x) = 3x^2 + 8
Shifting 5 units to the right gives:
3(x - 5)^2 + 8
Now 2 units down :
3(x - 5)^2 + 8 - 2
= 3(x - 5)^2 + 6.
All u have to do is substract wich equals -129
We are given with
a1 = 2
r = 4
These are components of a geometric series. The first term is 2 and the common ratio is 4. To get the first six terms, we use the formula:
an = a1 r^(n-1)
a1 = 2 (4)^(1-1) = 2
a2 = 2 (4)^(2-1) = 8
a3 = 2 (4)^(3-1) = 32
a4 = 2 (4)^(4-1) = 128
a5 = 2 (4)^(5-1) = 512
a6 = 2 (4)^(6-1) = 2048
Answer:
Step-by-step explanation:
a1 = 3(1) - 7 = - 4
a2 = 3(2) - 7 = -1
d = a2 - a1
d = -1 - (-4)
d = -1 + 4
d = 3
a60 = 3(60) - 7
a60 = 180 - 7
a60 = 173
n = 60
Sum = (a1 + a60) * n / 2
Sum = (-4 + 173) * 60/2
Sum = (169)*30
Sum = 5070
==================
Just to check, we'll use the second summation formula
d = 3
n = 60
a1 = -4
Sum = (2*a1 + (n - 1)*d )*n / 2
Sum = (2*(-4) + (60 -1)*3)* 60/2
Sum = (-8 + 59*3) * 30
Sum = (177 - 8)*30
Sum = 169 * 30
Sum = 5070
Same answer.