Answer:
N= -4
Step-by-step explanation:
Just divide both sides by 45.3 to isolate the variable (n).
Hope this helped :)
Answer:
24000 pieces.
Step-by-step explanation:
Given:
Side lengths of cube = 
The part of the truck that is being filled is in the shape of a rectangular prism with dimensions of 8 ft x 6 1/4 ft x 7 1/2 ft.
Question asked:
What is the greatest number of packages that can fit in the truck?
Solution:
First of all we will find volume of cube, then volume of rectangular prism and then simply divide the volume of prism by volume of cube to find the greatest number of packages that can fit in the truck.


Length = 8 foot, Breadth =
, Height =


The greatest number of packages that can fit in the truck = Volume of prism divided by volume of cube
The greatest number of packages that can fit in the truck = 
Thus, the greatest number of packages that can fit in the truck is 24000 pieces.
Answer:
<h2>b = 15°</h2>
Step-by-step explanation:
If Pq = RQ then ΔPQR is the isosceles triangle. The angles QPR and PRQ have the same measures.
We know: The sum of the measures of the angeles in the triangle is equal 180°. Therefore we have the equation:
m∠QPR + m∠PRQ + m∠RQP = 180°
We have
m∠QPR = m∠PRQ and m∠RQP = 60°
Therefore
2(m∠QPR) + 60° = 180° <em>subtract 60° from both sides</em>
2(m∠QPR) = 120° <em>divide both sides by 2</em>
m∠QPR = 60° and m∠PRQ = 60°
Therefore ΔPRQ is equaliteral.
ΔPSR is isosceles. Therefore ∠SPR and ∠PRS are congruent. Therefore
m∠SPR = m∠PRS
In ΔAPS we have:
m∠SPR + m∠PRS + m∠RSP = 180°
2(m∠SPR) + 90° = 180° <em>subtract 90° from both sides</em>
2(m∠SPR) = 90° <em>divide both sides by 2</em>
m∠SPR = 45° and m∠PRS = 45°
m∠PRQ = m∠PRS + b
Susbtitute:
60° = 45° + b <em>subtract 45° from both sides</em>
15° = b
Answer:The Perimeter of Green Island is 1.6 km.