
When two bodies collide with each other in the absence of an external force, then the total final momentum of the bodies is equal to their total initial momentum.
Answer:
2 is the numerical answer.
Explanation:
Hello there!
In this case, according to the given information and formula, it is possible for us to remember that equation for the calculation of the average kinetic energy of a gas is:

Whereas R is the universal gas constant, NA the Avogadro's number and T the temperature.
Which means that for the given ratio, we can obtain the value as follows:

Regards!
I got you kid It’s A- 2.5m/sb
The one that research has determined about the orbit of an electron around nucleus is : Each sub-level electron type has a unique path where it will likely to be found
Here are the sub levels of an electron :
-sub level s, maximum number of 2 electrons
- sub level p, maximum number of 6 electrons
- sub level d, maximum number of 10 electrons
- sub level f, maximum number of 14 electrons
Answer:
F=5833.3 N N
Explanation:
Newton's second law applied to the car
F= m*a Formula (1)
F: Force in Newtons (N)
m : mass in kg
a: acceleration ( m/s²)
kinematics car
vf= v₀ + a*t Formula (2)
vf : final velocity (m/s)
v₀ : final velocity (m/s)
a : acceleration ( m/s²)
t : time t
Equivalences
1 km= 1000m
1 h = 3600 s
Data
m= 1000kg
v₀ = 90 km/h = 90*1000/3600 m/s = 25 m/s
vf= 0
t= 6 s
Problem Development
We calculate the acceleration replacing the data in the formula (2) :
0 = 25 + a*6
a= -25/6 = -4.16 m/s² ( The negative sign indicates that the car is braking)
We calculate the force is required to stop the car replacing the data in the formula (1)
-F = 1400 kg*(-4.16 m/s²)
F=5833.3 N