-- Although it's not explicitly stated in the question,we have to assume that
the surface is frictionless. I guess that's what "smooth" means.
-- The total mass of both blocks is (1.5 + 0.93) = 2.43 kg. Since they're
connected to each other (by the string), 2.43 kg is the mass you're pulling.
-- Your force is 6.4 N.
Acceleration = (force)/(mass) = 6.4/2.43 m/s²<em>
</em> That's about <em>2.634 m/s²</em> <em>
</em>(I'm going to keep the fraction form handy, because the acceleration has to be
used for the next part of the question, so we'll need it as accurate as possible.)
-- Both blocks accelerate at the same rate. So the force on the rear block (m₂) is
Force = (mass) x (acceleration) = (0.93) x (6.4/2.43) = <em>2.45 N</em>.
That's the force that's accelerating the little block, so that must be the tension
in the string.
Answer:
the answer is A.
Explanation:
Using the laws of newton:
∑F = ma
where ∑F is the sumatory of forces acting in the system, m the mass and a the acelertion of the system.
Then, if the block is moving with constant velocity, its aceleration is equal to 0, so:
∑F = m(0)
∑F = 0
It means that:
F - = 0
where F is the force applied and is the friction force. Replacing the value of F, we get:
310N - = 0
Finally, solving for :
Answer:
never lol
studying is your work
but why all are doing I don't know=_=
Answer:
A horse is running at 12m/s accelerated to 38m/s in 10 seconds. What is the horses acceleration.
2.6m/s^2
The response is False, both bars, iron bars and plastic
bars have de same inertia, this characteristic does not depend on the type of
material, the inertia depends on his transverse section, since we can estimate
in the following formula
<span>Area moment of inertia Ixx = BH3/12</span>
<span>Area moment of inertia Iyy= HB3/12</span>