Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J
Answer:
The answer to your question is: 20
Explanation:
Atomic number is the number of proton and atom has. Each element has a specific number of protons, if the number of protons change, then this is a new element.
Mass number is the number of protons and neutrons and atom has.
Mass number = protons + neutrons
Data
Number of protons = ?
Atomic number = 20
Then,
atomic number = number of protons = 20
Answer:
The most common of these is carbon 12, 13, 14. All of these isotopes have the same atomic number but different mass numbers. Carbon has the atomic number of 6 which means that all isotopes have the same proton number. However, the number of neutrons is different, thus giving different mass numbers.
Answer:
if you slide a hockey puck on ice, it will eventually stop, because of friction on the ice
kite when the wind changes can be described by the first law
Explanation:
if you slide a hockey puck on ice, it will eventually stop, because of friction on the ice
kite when the wind changes can be described by the first law
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore