Answer:
I think its B
Explanation:
because "This means that when you rubbed the plastic comb along your hair, your hair resisted the movement of the comb and slowed it down. The friction between two surfaces can cause electrons to be transferred from one surface to the other."
Answer:
a. b- x= y
dx = -dy
b. F = 
c. F = 
Explanation:
a. x components:

= 
Integrating and solving gives:
b- x= y
dx = -dy
b. the force is given by the equation derived from (a.):
F = 
c. Given that r>>a, the expression becomes:
F = 
Explanation:
When the size of the charge distribution is less than the distance to the deviation point of the charge then the charge distribution would produce the same effect such as a linear charge.
Answer:
<em>the phase relationship between two waves.</em>
<em></em>
Explanation:
Coherence describes all properties of the correlation between physical quantities between waves. It is an ideal property of waves that determines their interference. In a situation in which there is a correlation or phase relationship between two waves. If the properties of one of the waves can be measure directly, then, some of the properties of the other wave can be calculated.
Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib
Explanation:
We have,
Mass of a baseball is 0.147 kg
Initial velocity of the baseball is 44.5 m/s
The ball is moved in the opposite direction with a velocity of 55.5 m/s
It is required to find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Change in momentum,

Impulse = 14.7 kg-m/s
Therefore, the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat is 14.7 kg-m/s