(a) The ball's height <em>y</em> at time <em>t</em> is given by
<em>y</em> = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve <em>y</em> = 0 for <em>t</em> :
0 = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
0 = <em>t</em> ((20 m/s) sin(40º) - 1/2 <em>g t</em> )
<em>t</em> = 0 or (20 m/s) sin(40º) - 1/2 <em>g t</em> = 0
The first time refers to where the ball is initially launched, so we omit that solution.
(20 m/s) sin(40º) = 1/2 <em>g t</em>
<em>t</em> = (40 m/s) sin(40º) / <em>g</em>
<em>t</em> ≈ 2.6 s
(b) At its maximum height, the ball has zero vertical velocity. In the vertical direction, the ball is in free fall and only subject to the downward acceleration <em>g</em>. So
0² - ((20 m/s) sin(40º))² = 2 (-<em>g</em>) <em>y</em>
where <em>y</em> in this equation refers to the maximum height of the ball. Solve for <em>y</em> :
<em>y</em> = ((20 m/s) sin(40º))² / (2<em>g</em>)
<em>y</em> ≈ 8.4 m
The ration of output work to input work expressed as a percentage is called <u>Efficiency</u>.
I think it is option (C).
If the answer is helpful then mark me as brainly.
Significa que en su investigación, debe proporcionar suficiente información para que otras personas que lean su investigación puedan hacer la investigación nuevamente.
The maximum force that the athlete exerts on the bag is equal to 1,500 N and in the opposite direction as the force that the bag exerts on the athlete.
<h3>
Newton's third law of motion</h3>
Newton's third law of motion states that action and reaction are equal and opposite.
Fa = -Fb
The force exerted by the athlete on the bag is equal to the force the bag exerted on the athlete but in opposite direction.
Thus, the maximum force that the athlete exerts on the bag is equal to 1,500 newtons and in the opposite direction as the force that the bag exerts on the athlete.
Learn more about force here: brainly.com/question/12970081
#SPJ1