Answer:
(E) Second law of thermodynamics
Explanation:
The second law of thermodynamics can be understood according to Clausius' words: In an isolated system, no process can occur if a decrease in the total entropy of the system is associated with it. These processes are associated with energy transformations, in which a variable is introduced, called entropy that indicates the notion of disorder. Therefore, in any isolated process, the disorder can only grow.
Charles's <span>law is also known as the law of volumes explained the relation between the volume of gas and its temperature.
Charles's law states that: " At constant pressure, the volume of a certain mass of gas is directly proportional to its temperature in kelvin".
This means that:
V = T*constant
V/T = constant
Based on this, the correct choice is:
</span><span>a) V/T</span>
You can compare the velocity of the car, 60 mph, with the velocity that a mass would acquire when falls from certain height.
First, convert 60 mph to m/s:
60 miles/h * 1.60 km/mile * 1000 m/km * 1h/3600s = 26.67 m/s
Second, calculate from what height a body in free fall reachs 26.67 m/s velocity when hits the floor.
free fall => Vf^2 = 2g*H => H = Vf^2 / (2g)
H = (26.67m/s)^2 / (2*9.8 m/s) = 36.2 m
If you consider that the height between the floors of a building is approximately 3.6 m, you get 36.2 m / 3.6 m/floor = 10 floors.
Then, you conclude that the force of impact is the same as driving you vehicle off a 10 story building.
Answer:
Explained
Explanation:
The cheater pipe extends the wrench in radial direction, providing a larger momentum for the force you exert.
For a given force the torque exerted with the cheater pipe is larger.
Mathematically we can write that
τ = r×F and τ'= r'×F
now since r'> r
⇒ F'>F