Answer:Why are temperatures higher in summer than in winter?
During the summer, the sun's rays hit the Earth at a steep angle. ... Also, the long daylight hours allow the Earth plenty of time to reach warm temperatures. During the winter, the sun's rays hit the Earth at a shallow angle. These rays are more spread out, which minimizes the amount of energy that hits any given spot.
Answer:
With an Environmental Engineering and a broadcasting minor
You can work as an On Air personality that host programs that provide your audience with documentaries about the environments and project carried out by Environmental Engineer
and also you can work as a journalist that explore the world making research that will preserve the environment and leveraging the media as a broadcaster to provide this research findings as a video for you audience
Explanation:
In order to get a better understanding let define some terms
Environmental Engineer
:
Environmental engineers resolve and help prevent environmental problems. They work in many areas, including air pollution control, industrial hygiene, toxic materials control, and land management. The duties of an environmental engineer range from planning and designing an effective waste treatment plant to studying the effects of acid rain on a particular area. An environmental engineer is sometimes required to work outdoors, though most of her work is done in a laboratory or office setting. Career opportunities for environmental engineers exist in consulting, research, corporate, and government positions.
Broadcasting:
Broadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum (radio waves), in a one-to-many model.
Answer:
6.88 mA
Explanation:
Given:
Resistance, R = 594 Ω
Capacitance = 1.3 μF
emf, V = 6.53 V
Time, t = 1 time constant
Now,
The initial current, I₀ = 
or
I₀ = 
or
I₀ = 0.0109 A
also,
I = ![I_0[1-e^{-\frac{t}{\tau}}]](https://tex.z-dn.net/?f=I_0%5B1-e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%7D%7D%5D)
here,
τ = time constant
e = 2.717
on substituting the respective values, we get
I = ![0.0109[1-e^{-\frac{\tau}{\tau}}]](https://tex.z-dn.net/?f=0.0109%5B1-e%5E%7B-%5Cfrac%7B%5Ctau%7D%7B%5Ctau%7D%7D%5D)
or
I =
or
I = 0.00688 A
or
I = 6.88 mA
F = m • a
What we know:
- Gravity: 9.8 m/s
- Force: 490 N
Equation derived:
m = F/a
m = 490/9.8
= 50 kg