Answer:11686.5 joules
Explanation:
elastic constant(k)=53N/m
extension(e)=21m
Elastic potential energy=(k x e^2)/2
Elastic potential energy=(53 x (21)^2)/2
Elastic potential energy=(53x21x21)/2
Elastic potential energy=23373/2
Elastic potential energy=11686.5
Elastic potential energy is 11686.5 joules
Answer:
9.2 amperes
Explanation:
Ohm's law states that the voltage V across a conductor of resistance R is given by 
Here, voltage V is proportional to the current I.
For voltage, unit is volts (V)
For current, unit is amperes (A)
For resistance, unit is Ohms (Ω)
Put R = 12.5 and V = 115 in V=RI

This seems like an incomplete question..
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
That ratio is called"efficiency". It doesn't need to be a percent.
It can just as well be a fraction or a decimal number.