Answer:
99,999
Step-by-step explanation:
Answer:
a) see the plots below
b) f(x) is exponential; g(x) is linear (see below for explanation)
c) the function values are never equal
Step-by-step explanation:
a) a graph of the two function values is attached
__
b) Adjacent values of f(x) have a common ratio of 3, so f(x) is exponential (with a base of 3). Adjacent values of g(x) have a common difference of 2, so g(x) is linear (with a slope of 2).
__
c) At x ≥ 1, the slope of f(x) is greater than the slope of g(x), and the value of f(x) is greater than the value of g(x), so the curves can never cross for x > 1. Similarly, for x ≤ 0, the slope of f(x) is less than the slope of g(x). Once again, f(0) is greater than g(0), so the curves can never cross.
In the region between x=0 and x=1, f(x) remains greater than g(x). The smallest difference is about 0.73, near x = 0.545, where the slopes of the two functions are equal.
Answer:
im pretty sure the answer is 150
Step-by-step explanation:
hope this helps <3
Answer:
3x12 theres 3 cirs and 6÷4 so 3x12
Let us name the players A,Dave,Zack,Paul,E and F
For the first position there are two candidades ( Zack / Paul )
For the second position there is only one candidate i.e. Dave
For the third place there will be 4 candidates (out of Zack and Paul - 1 as one of them is already taken for the first position and A, E and F total-4)
For the fourth place there will be 3 candidates ( out of the four available candidates in the 3rd place, one will be taken up for 3rd place )
For the fifth place there will be 2 candidates
Finally, for the last place there will be only one candidate left.
On multiplying the no. of available cadidates, we get 2 * 1 * 4 * 3 * 2 * 1 = 48 i.e. option (A)
Please mention minor spelling mistakes
For the second question:
Let the no of dotted marbles be 'x' and no of striped marbles be 'y'
then the equation will become as follows
(y+6)/x = 3
and
(x+6)/y = (2/3)
On solving the equations, we will get x = 10 and y = 24
Total balls = 10+24+6 = 40 (option E)
Answer 3 will be ) For the first edge, he can choose 3 paths
For the second edge he can choose 2 paths for each path of its first edge's path
For the third , he is bounded to move on the paths created by the first and the second edges hence 1 path for each path created by the first and the second edge together
It will be multiplication of all the possibilities of the paths of the three edges differently.........
i.e. 3 * 2 * 1 = 6