Answer:
The area of one trapezoidal face of the figure is 2 square inches
Step-by-step explanation:
<u><em>The complete question is</em></u>
The point of a square pyramid is cut off, making each lateral face of the pyramid a trapezoid with the dimensions shown. What is the area of one trapezoidal face of the figure?
we know that
The area of a trapezoid is given by the formula

where
b_1 and b-2 are the parallel sides
h is the height of the trapezoid (perpendicular distance between the parallel sides)
we have

substitute the given values in the formula


20 and 28 can be divided by 4, so just take the 4 out so the answer should be 4(5x - 7)
Answer:
a) see the plots below
b) f(x) is exponential; g(x) is linear (see below for explanation)
c) the function values are never equal
Step-by-step explanation:
a) a graph of the two function values is attached
__
b) Adjacent values of f(x) have a common ratio of 3, so f(x) is exponential (with a base of 3). Adjacent values of g(x) have a common difference of 2, so g(x) is linear (with a slope of 2).
__
c) At x ≥ 1, the slope of f(x) is greater than the slope of g(x), and the value of f(x) is greater than the value of g(x), so the curves can never cross for x > 1. Similarly, for x ≤ 0, the slope of f(x) is less than the slope of g(x). Once again, f(0) is greater than g(0), so the curves can never cross.
In the region between x=0 and x=1, f(x) remains greater than g(x). The smallest difference is about 0.73, near x = 0.545, where the slopes of the two functions are equal.
Given data:
The given expression is 8 ⅓-5.
The given expression can be written as,

Thus, the difference of the given expression is 10/3.