Explanation:
Hemophilia is a disease that is characterized by an abnormal blood clotting process. There are many different proteins that are involved in the clotting process and a single mutation or change in one of them could result in serious effects. Hemophilia is characterized by an abnormal version of one of the many proteins involved in the clotting process, the proteins that are commonly affected are the coagulation factor 8 or 9 (VIII or IX). These abnormal proteins are caused by a mutation in the gene (within the DNA) that codifies for the production of each protein. In other words, a mutation in the part of the DNA, (gene F8) will lead to a dysfunctional coagulation factor VIII and a mutation in the gene F9 will lead to a dysfunctional coagulation factor IX. Importantly, these mutations could be inherited and could cause hemophilia. Therefore, an error in the DNA and subsequently, an error in the protein will cause hemophilia. Finally, it is important to mention that there are other types of hemophilia that are not caused by the above-mentioned mutations, such as acquired hemophilia.
Answer:Living organisms release energy gradually to prevent most of the energy from heat loss. The cells release the chemical energy present in food and it should be utilized gradually to prevent the energy loss in the form of heat and light.Most of the energy released by the body is through cellular respiration.The energy is produced by the continuous process that occurs in the body ,breakdown of food and energy production.If a huge amount of energy will be released from the body it will only be in the form of heat loss so to prevent the energy from lost in the form of heat living organism release energy gradually
Answer:
C) The Calvin cycle requires ATP and NADPH, which require sunlight to be produced
Explanation:
The light-dependent phase of photosynthesis includes the photolysis of water molecules. The released electrons are passed to PSII to PSI via electron carriers and finally to NADP+ to reduce it into NADPH.
Transfer of electrons via electron carriers also generates the proton concentration gradient which in turn drives ATP synthesis. ATP and NADPH formed during light reactions are used in the Calvin cycle as an energy source and electron donor respectively.
Hence, to continue, the Calvin cycle requires the synthesis of ATP and NADPH in the presence of light.