4 after solving =0.004800 where 4,800 is the significant number
<span><span>When you write down the electronic configuration of bromine and sodium, you get this
Na:
Br: </span></span>
<span><span />So here we the know the valence electrons for each;</span>
<span><span>Na: (2e)
Br: (7e, you don't count for the d orbitals)
Then, once you know this, you can deduce how many bonds each can do and you discover that bromine can do one bond since he has one electron missing in his p orbital, but that weirdly, since the s orbital of sodium is full and thus, should not make any bond.
However, it is possible for sodium to come in an excited state in wich he will have sent one of its electrons on an higher shell to have this valence configuration:</span></span>
<span><span /></span><span><span>
</span>where here now it has two lonely valence electrons, one on the s and the other on the p, so that it can do a total of two bonds.</span><span>That's why bromine and sodium can form </span>
<span>
</span>
Answer:
2. The metal would lose one electrons and the non metal would gain one electrons
Explanation:
An atom of a certain element reacts with the atoms of other elements in order to fullfill its outermost shell (called valence shell).
We notice the following:
- The elements in Group 1 (which are metals) have only 1 electron in their valence shell
- The elements in Group 17 (which are non-metals) have 1 vacancy (lack of electron) in their valence shell
This means that in order for both an atom of group 1 and an atom of group 17 to fullfill the valence shell, they have to:
- The atom in group 1 has to give away its only electron of the valence shell
- The atom in group 17 has to gain one electron in order to fullfill the shell
Therefore, the correct option is
2. The metal would lose one electrons and the non metal would gain one electrons
Answer:

Explanation:
From the question we are told that:
Density of acetic acid 
Density of Water 
Generally the equation for Solution Density is mathematically given by



